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A fixed line source, oscillating harmonically in time, produces sound waves which
fall on a two dimensional shear layer in which the velocity increases linearly over a finite
distance and then remains constant. The linearized theory of sound allows a multiplicity
of solutions. The ambiguity is resolved by an application of the principle of causality.
Asaresultitis found that, for Strouhal numbers below a certain critical level, Helmholtz
instability is evident but not if the Strouhal number is above critical. The instability
wave fans out from a negligibly small region as the Strouhal number drops from critical
until it occupies a wedge of 45° when the layer simplifies to a vortex sheet. The limit is
the same as that derived by direct analysis of the vortex sheet but no ultra-distributions
are necessary if the layer is not infinitesimally thin.

— Various other aspects of thin and thick layers are also discussed.

<

—

olm

M= 1. INTRODUGTION
)

Q) The problem of the interaction of sound waves and jets has attracted much attention in recent

E o years. The work has been stimulated by a desire for fundamental understanding of the process in
W

order to quieten the noise generated by flows and machinery.

The simplest model that can be contemplated of the situation is a plane vortex sheet, separating
a still medium from one moving with uniform velocity and illuminated by acoustic radiation
from a line source. This model was discussed by Jones & Morgan (1972) (where earlier references
will be found) when the source is fixed and by Jones (1974) when the source is moving. In both
cases difficulties arose in ensuring that there was no sound field before the source was switched on,
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288 D.S.JONES

being resolved ultimately by working with rather abstruse entities known as ultradistributions.
The physical interpretation of ultradistributions is not obvious and so doubt was cast on the
adequacy of the model.

The model next in order of complexity is a shear layer in which the velocity increases linearly
from 0 to the value U over the distance # and then remains constant. The layer is irradiated by
sound from a line source. This model is considered in this paper on the assumption that the
source is varying harmonically in time but fixed in space. Apart from its relevance to the noise of
jets it has its own intrinsic interest as conveying some idea of the propagation of sound in a
shearing wind.

One of the aims is to determine and evaluate the solution unequivocally so that a firm com-
parison between the cases # = 0 and & # 0 can be made. The case & = 0 has already displayed the
difficulties of interpretation which can arise if due mathematical attention is not paid so no effort
has been spared subsequently to guarantee that the analysis is as rigorous as can be.

The trouble with the investigation of the vortex sheet stemmed from the presence of a certain
non-real pole in the complex plane. A careful examination of the poles for the general shear layer
was therefore essential. After a lengthy elaborate studyitwas discovered that there was an infinite
number of poles some of which were on the real axis. The multiplicity of solutions for the shear
layeris thereby far worse than that for the vortex sheet. However, it was found that as the Strouhal
number £%/M (k being the wavenumber of the source and M the Mach number associated with U)
reduced two of the real zeros came into coincidence and shifted off the real axis. The observation
turned out to be crucial in resolving some of the non-uniqueness especially since most of the poles
ultimately gave an insignificant contribution to the field. The final arbiter, however, which
disposed of all questions of uniqueness is the principle of causality. Fortunately, in this case, the
conditions of causality can be complied with by conventional functions and ultradistributions
do not have to be introduced.

The coalescence of the two real zeros referred to is related to the onset of Helmholtz instability
in the shear layer and happens at a critical Strouhal number. If the Strouhal number is above
critical there is no instability wave. As the Strouhal number moves below critical an instability
wave first appears in the immediate neighbourhood of the downstream end of the layer and then
gradually fans out eventually filling a wedge of 45° in the limit of vanishing Strouhal number.

The unstable behaviour of a layer was examined many years ago by Rayleigh (1880) but he
confined his investigation to the instability of an incompressible jet under disturbances of its
boundary. In our problem compressibility is an essential feature and there is an interaction
between the acoustic excitation and fluid flow. Thus the phenomena are substantially more
complicated than those encountered by Rayleigh. In addition, the problem is not one of deter-
mining which modes of a jet grow or decay but of finding the reaction to a specific sonic excitation.
Problems similar to that of Rayleigh for compressible flow have been studied by Lilley (1974)
and the compressible form of the Orr—Sommerfeld equation involved is related to the differential
equation it will be necessary to analyse subsequently.

Instability waves may or may not be induced by an acoustic wave falling on a shear layer. When
an instability wave is created it grows exponentially but other waves do not so the instability wave
dominates in the region it occupies. That region depends upon the Strouhal number as already
explained and may be non-existent. Since the critical Strouhal number is about % there will be
many practical situations in which the Strouhal number will not be small enough for an instability
wave to be generated. For example, if the velocity transition across the layer corresponds to a
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Mach number of 0.3 the layer thickness must be less than } cm at a wavelength of 30 cm for
instability to occur. In air, this would imply a velocity transition of 100ms~! and an acoustic
frequency of 1100 Hz. At 200 Hz or a wavelength of 1.65m, an upper bound for the thickness
would be 3cm for the same velocity change. On the other hand, a velocity change of 10m s~
excited at 1100 Hz would require a layer thinner than $ mm for instability to be observed.

There is a further aspect which may militate against the appearance of an instability wave.
The instability grows from downstream so thatin a real jet it has a tendency to try to originate in
a region where the shear layer is widening. The effective Strouhal number is therefore increasing
and consequently acting against the establishment of an instability wave. Nevertheless, it is
important from a theoretical point of view to compare the very thin layer with the vortex sheet.

In fact the limit of the infinitesimally thin layer gives the same picture as the direct analysis
of the vortex sheet and thus provides a confirmation of the associated theory. This is a satisfactory
aspect of the work.

It should be emphasized that if the harmonic problem is considered in isolation there is no
a priori reason for selecting the particular solution with its attached instability wave that was
finally settled on. There are no criteria for the harmonic problem, if causality be set aside, for
preventing the addition of arbitrary multiples of the instability wave and the waves from other
poles to any given solution; they all satisfy the governing equations. Thus the principle of
causality is an essential weapon in arriving at the correct solution of acoustic scattering by shear
layers. ‘

The problem of the harmonic source is formulated in section 2 and a mathematical solution
determined. To find the solution it is necessary to solve a certain differential equation. In order
not to interrupt the main text the properties of this differential equation are discussed in
appendix A; equations in this appendix are identified by the letter A so that, for example, (A 1)
means equation (1) of appendix A.

The field in the still medium at large distances from the origin is examined in §3. This
necessitates a knowledge of the poles of the integrand, a matter which isinvestigated in appendix B.
Plausible arguments are advanced for electing one of the several soluticns as the candidate
appropriate to the problem. The consequent behaviour of the instability wave has already been
described and the evaluation of other waves is also carried out.

The field produced on the far side of the shear layer is calculated in § 4. In § 5 the modifications
which occur when the source moves off to infinity and the incident radiation becomes a plane
wave are derived, and the relation between the reflexion and transmission coefficients elucidated
The special cases when the layer is thin or thick are discussed in §§ 6 and 7 respectively. If the
layer is thin, i.e. the exciting wavelength is much greater than the thickness, the solution approxi-
mates to that for the vortex sheet, the approximation improving as /# — 0. The thick layer, which
is many wavelengths across, either does not reflect much energy and most of the energy is trans-
mitted or the wave is totally reflected while the transmitted wave is evanescent. The solution for
the thick layer is compared in § 8 with that supplied by ray theory and satisfactory agreement
found. In addition, it is suggested that observations of energy perpendicular to the layer may have
some difficulty in recognizing the presence of the layer.

The content of § 9 is devoted to the implications of applying the principle of causality. In con-
trast to the case of the vortex sheet, it is brought to light that a contour exists which provides a
unique causal solution which can be expressed in conventional functions and does not have to be
synthesized from ultradistributions. By analytic continuation, it is confirmed that the solution

37-2


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

290 D.S.JONES

adopted in § 3 complies with the principle of causality and is the only one so to do. A final para-
graph concerns a simple example so that one may perceive why ultradistributions can be steered
clear of when % 5 0 but not when £ = 0.

The last section, 10, very briefly summarizes the main results of the preceding sections in
qualitative fashion.

2. FORMULATION

The problem to be considered is that of the propagation of two dimensional sound waves in the
presence of a simple shear layer. In the undisturbed state the fluid will be assumed to be flowing
parallel to the x-axis with velocity independent of x though varying with y, the coordinate per-
pendicular to x. The undisturbed medium is taken to be at restin y < 0. The shear layer occupies
the region 0 < y < % and in it the only component of velocity is U(y) parallel to the x-axis-
A simple model is chosen in which U(y) increases linearly from zero aty = 0 to U(k) aty = &

so that Ul) =UR) ylk (0<y<h).

Above the level y = £, U(y) has the constant value U(%). The constant pressure and density will
be denoted by p, and p, respectively. Also the fluid will be assumed to be inviscid and the sound
speed a taken as constant.

Sound waves are now superimposed on the flow. These will perturb the pressure to p,(1+ )
and the density to py(1+ p). The velocity will have components U(y) +u, and u, parallel to the
x- and y-axes respectively. It will be assumed that the perturbations are sufficiently small for
linearized theory to be employed. Then the governing equations are

Ouy +U( )——~+u U p“g£=0, (1)
Po 0%
Qu,, [)Oap
at+ () Lo y =0, (2)
Ou,,  Ou,
+U() +*a‘;+a‘y“0 (3)

where ¢is time and the effects of thermal conductivity and gravity are neglected. For the moment,
the source of sound has been omitted.

Let the time variation of the acoustic wave be harmonic, varying according to the factor eivt
which will be suppressed subsequently. Then, if dp = a%0,dp/p,, where a is the constant speed of
sound in the undisturbed flow, equations (1)—(3) reduce to

{U(y)%+iw}ux+ U’uy+azg§ =0, (4)

0 . 2 0p
{U(y)5;6+1a)}uy+a @—O, (5)

0 6u Qu,,
{U(y)a +w}p+—a—~+a~y ~o. (6)
From (4)-(6) follows
d . d 2p % K

:U(y)a+1w}{U(y)a +1a)}p a2 (ap ay) 2U 0. (7)
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When there is no shear flow so that U’ = 0, the acoustic source customarily appears on the
right hand side of (7). It will therefore be added to (7) in this case. In effect, it can be regarded
as coming from the continuity equation (3) and representing the creation or destruction of mass.
Accordingly, (7) is replaced by

3 . 2p o2 ou
(V) g+i0] oo (Sh+55) 20" 52 = 809 80010, (®)

where 8(x) is the usual Dirac delta function. The source of sound has been placed at (0, y,) and,
in the following, y, will be chosen as negative so that the source lies in the still medium.

Coupled with (8) are (4) and (5); these are the equations which have to be solved in our model.
We seek solutions of the form

= LI I —ikux
p—znf_wpe du

with similar expressions for the velocity components, where £ is the wave number w/a. The strict
nature of the contour of integration will be decided later. In the meantime we proceed formally.
Equations (4), (5) and (8) give

7, = @[ikul(y) — &} dp/dy, (9)

ikuU (y) —a} i, = — ikua+a2U" (y) [ikuU (y) — a}]- d/dy, (10)
— B{uU(y) — ) p— a*( — B2p+ d%|dy?) + 2U"aufuU (y) — a)*dpJdy = kS(y—y,).  (11)
In the region y < 0 where U = 0, (11) reduces to

d?p[dy® + K% = — k8 (y —y,)[a?, (12)
where v2 = 1 —u?, while in y > 4 where U = U(4), (11) becomes
d%pdy* + ks = o, (13)

where w? = (1 — Mu)?—u?, with M = U(k)/a the Mach number associated with the stream above
y=h

So far the fact that U varies linearly in 0 < y < 4 has not been used. Make the substitution
Y = s —kuy where s = kh/M is the Strouhal number of the flowiny > £. Then,in 0 < y < &, (11)
is transformed to

d%p/dY2—(2/Y)dp[/dY — (1 —Y?[72) p = 0, (14)
where 7 = us.

Differential equations related to (14) have been encountered by Goldstein (1974) and Lilley
(1974) though not for the ranges of parameters involved here.

Before proceeding to the solution of (12)—(14) it is necessary to indicate the meaning to be
attached to v and w for complex values of . The branch lines for » will be drawn along the real
u-axis from —ooto — 1 and from 1 to co. Then v will be required to be positive for —1 < u < 1;it
will be negative imaginary for u just above the branch line from 1 to co and also when u is just
below the branch line from —oo to —1.

As regards w, it will be assumed from now on that M < 1 so that the stream is moving subsoni-
cally in y > A. In view of the linear variation of U(y) the flow is, in fact, subsonic for all y. The
branch lines of w are drawn along the real axis from —ooto —1/(1 — M) and from 1/(1 + M) to co.
On the real axis between the branch points w will be taken to be positive. Just above and below
its branch lines it will have similar behaviour to that of v. In the following we shall have in mind
that u is real, approaching the real axis from above in # > 0 and from below in z < 0.
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If there is slight absorption present so that £ has a negative imaginary part it is to be expected
that the sound waves will decay as |y| — co. Therefore, in view of the choice of branches for v and
w, the appropriate solutions of (12) and (13) are

p = Aexp[ikvy] + (1/2ia%) exp [ —ikv |y —y,[] (y < 0)
= Bexp[—ikwy] (y > h).

For 0 < y < £, (14) must be solved. The two independent solutions of (14) are examined in
appendix A and denoted by f, g. The pair must be retained in 0 < y < 4 since they are both finite

p=Cf(Y)+Dg(Y) (0<y<h).
The continuity of p and #u,, across the interfaces y = 0 and y = 4 implies that
A+ (1/2ia%) e*0 = Qf (s) + Dg(s),
ikv{d — (1/2ia?v) e} = — ku{Cf"(s) + Dg’(s)},
Bt = Cf (€) + Dg(£),
—iwBe ot = —u{Cf' () + Dg'(€)},

in the region and so

where § = s— kuh. Therefore

44 = gi—ia,;CXP [ikvyo] [iv{uf (s) — Ag(s)} —u{uf" (s) — Ag' ()}, (15)

AB = — (8&%u/a?) exp [ik(vy, + wh)], (16)

AC = (pa?) eoto, (17)

AD = — (A[a?) elFvvo, (18)

where A =uf'(§) —iwf(£), n=ug'(§)—iug(f), (19)
A = p{uf’(s) +ivf (5)} — Aug'(s) +1ivg(s)} (20)

and, in the derivation of B, the Wronskian relation (A 8) has been employed.
The formulae for the disturbance in y < 0 are now

P“ng {AeXp[lkvy]Jr 5, exp[—ikv |y — y0|]}eXp[—1kux]du, (21)
Uy = %[ {Aexp[1/wy]+212 exp[—ikv|y— y0|]}exp[—1kux]udu, (22)

u, = _%tfio {Av exp [ikvy] + w exp[—ikv|y — ?/o[]} exp [ —ikux] du, (23)

where 4 is given by (15). Iny > &,

p = _1- ® B exp [ —ikwy —ikux] du, (24)
a | *® uB . .

U, = EEJ_ TSP [ —ikwy —ikux] du, (25)
a [® wB . .

u, = %f_w 1_juuexp[—1/cwy—1kux] du, (26)
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whilein0 <y <k
p=o f " (G (1) + De(T)}exp[ —ihu] du, (27)
w= g2 [ [CEF@) S (D}+D¥e() +¢ (T} exp [ —ikur] udy/ Y, (28)
u, = —;—%f:) {Cf'(Y)+Dg'(Y)}exp[ —ikux] udu/Y. (29)

The integrands in (21)—(29) may contain singularities at the branch points of » and w, at the
zeros of 4, atu = 1/M and at u = s/ky. There may also be an essential singularity at u = 0 because
7 vanishes there and f, g have an essential singularity at 7 = 0. To avoid these possible singularities
the path of integration in the u-plane is chosen to be the real axis with indentations. The path
passes below the branch lines in # < 0 and above the branch lines in # > 0. The indentations are
below the singularities in # < 0 and above them in z > 0 but, for definiteness, the indentation
at u = 0 is placed above. It will be found subsequently that the integrands do not, in fact, have
any singularity at « = 0 so that the indentation there is not strictly necessary.

With this understanding the integrals in (21)—(29) will exist unless convergence at infinity
fails. Now, as u — oo just above the real axis,

X ~ uf’(— kuh) —iwf (— kuh)
~ uf (kuh) + (1 — M2} uf (kuh)

from (A 4). To apply (A 23) and (A 24) note that 7 = us and so {is effectively M. Therefore z of
(A 16) is a positive constant. Taking advantage of (A 25) we obtain

A ~ 3urM (1 — M%)t exp[4r{arcsin M+ M (1 — M?)3} —s(1 — M?)E]. (30)
Similarly, from (A 31), z ~ $A. From (A 51)—(A 54),
A~ dues(2s—1). (31)

Therefore the integrals involving 4 and B in (21)—(26) converge uniformly as u — co. At first
sight, the integrals in (27)-(29) appear to diverge because of the combinations Yf+ f’. However,
itis straightforward to check that the exponentially growing terms do, in fact, cancel one another
by grouping f with ¢ and employing (A 30), (A 35) or by substituting f; and g, for f and g via
(A 36), (A37) and using (A 47,) (A 48).

As u - — o0, just below the real axis

X ~ uf(kku]) + (1 — M) uf (kb |u])

and 7 - — 0. Replacing 7 by —7 on account of (A 5), we find that (30) is still true with |7| in
place of 7. Again, the integrals converge at — oo, uniformly with respect to x and .

By virtue of the uniformity of convergence, p and the velocity are continuous everywhere,
except possibly at y = y,. Taking derivatives with respect to x or y does not destroy the
uniformity of convergence. The terms not involving 4 in (21)-(23) provide a particular integral
of (8). Thus we can see that (21)-(29) supplies a solution to our problem which satisfies all the
conditions imposed as long asthe conventions introduced for the path ofintegration are observed.

In the next section the implications of these formulae are investigated. Attention will be
concentrated primarily on the density since there is no great difficulty in deriving from its
properties the main features of the velocity.
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3. THE REFLECTED WAVE

The second part of the integrand of (21) gives rise to an integral which can be evaluated in
terms of Hankel functions. A similar evaluation can be carried out for part of 4. The net result is
that, in the region y < 0, (21) gives

1
2na?

p = g L (br) = HP}+ s [ 2007 (6) =A@} exp ioly +yo) — k] du

where H{® is the Hankel function of the second kind,r = {2+ (y —y,)2}* and r; = {x2+ (¥ +y,)2}*.
The term involving r represents the incident wave produced by the source asifit were in a medium
of infinite extent with U = 0. The other terms furnish the acoustic field reflected by the shear
layer and they will be denoted by pr.

The reflected wave p; consists of two constituents. The first, the Hankel function with argument
kry, can be thought of as the wave reflected by a soft boundary (where p = 0) at y = 0. The
second, comprising the integral, accounts for the presence of the shear layer and its modification
of the simple soft boundary condition. If we write

po = g | U (5) = Ag(6))expiko(y-+0) — ur] du

so that pr = (i/4a?) H{® (kr,) + ps, it is only when ps is small compared with the Hankel function
that it is reasonable to regard the shear layer as acting as a soft interface.

The evaluation of ps depends crucially upon the zeros of 4. The occurrence of even a single
non-real zero of 4 can lead to substantial trouble in ensuring a causal solution in the time domain
(see, for example, Jones & Morgan 1972). In effect, a non-real zero can generate a solution of
(12)—(14) with zero right hand side. By adding this solution to (21)—(29) we can manufacture
another answer fulfilling the conditions of our problem. Thus there is no uniqueness and the
proper interpretation of formulae is hard. As will be seen, 4 does have non-real zeros and so a
correct appreciation of their significance is a cardinal aspect of the investigation (see §9).

Locating the zeros of 4 is an intricate and delicate matter; details are in appendix B, with
a summary in § B 11. Briefly, 4 has a zero at the origin and infinite sequences of non-real zeros
uf, U, ..., uy, Uz, ... in the upper and lower half-planes respectively for all values of's. In addition,
A has one real zero (in 4 > 1/M) for s > 1 and two real zeros (both in & > 1/M)if £ > s > s,
where s, is a certain critical Strouhal number. If s < s, the two real zeros dissolve but a further
non-real zero u, presents itself in the upper half-plane.

The zero of 4 at the origin is counterbalanced by one in the numerator of each of the integrands
(21), (24) and (27) as can be verified from (A 11)—(A 14). Therefore, the zero of 4 at the origin
will be ignored from now on. The other real zeros which may be encountered are circumvented
by little detours above.

An estimate of ps at points of observation well away from the origin will now be derived by the
method of stationary phase. Let x = 7y cos 0y, y+y, = —rysin0; where 0 < 0; < ©. Assume that
kr, > 1. Thenu = cos 0, is a point of stationary phase. Deform the contour of integration into the
hyperbola u = cos (6, —io) where o is real and runs from — o to co. No branch line is met in the
deformation if 6, > v, where y is the angle between 0 and 4= such that cosy = 1/(M+1). If
0, < v, the hyperbolic path must be supplemented by a loop round the branch point at
u=1[(M+1).
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In the deformation poles due to the zeros of 4 may be passed over. To assess their contribution
let uy = cos (¢o—ic,) and uf = cos (¢F —ioF) where 0 < #y < n and 0 < ¢F < n. Then 4 is
passed over positively if 6; > ¢; and u; negatively if 6, < ¢7. Hence, as kr; — 0,

po~ TP Lk~ Il + 55 % 7 Ty A O 91 () = A2} exp =ik
3 5l H 07 00 U () = Aol exp [ —ikb]
4 4 : 2
+H(y=0) gt [t exp ik cos (0= 7)], (32

where R, = 2isin 0,{uf(s) — Ag(s)}/4 evaluated at u = cos 6,, Af and uF are the values of A and
respectively atu = uf, f(s) means f(s, suf) in a typical term of the series, 4'(u) = d4/du, H(x) is
the Heaviside unit function which is unity for x > 0, % for x = 0 and zero for ¥ < 0, a; = ufx—
of (Y +90)> b = uyx—vj (y+4,), v = (1—u7*)} and

b= [g {qf +1”f )}_f ( ){ug (‘S‘)'l'wg }]u—cosy

For temporary convenience the contribution from the pole # = %, has been included with the
series for u. It is understood that in Ry, w stands for —i|w| when 6, < y.

The formula (32) is not valid if 6, is near ¢§ or y. Transition formulae are required in these
regions. They may be derived as in Jones (1964) for 6, near ¢; and as in Jones & Morgan (1972)
for 6, near y. The thorough discussion in Jones & Morgan (1972) of the transition that takes place
as variations in 6, move the contour through a pole indicates that it provides a negligible cor-
rection to the term involving R, so long as the pole does not have a tiny imaginary part. The only
pole which approaches the real axis is #, so that all other poles may now be dropped from (32).

Expand the Hankel function in pr asymptotically. Then, as kr; — oo,

1 R
Pr ™ 942 (2mkry)t Ekrt P

95‘4 COS4 ')/ SiIl 7/
+H(y—0,) (zn)%azb2=krl sin (7 — 0,

ikry — §mi)

)}% exp [}ni —ikr, cos (6; — )] (33)

when s > s; here R = Ry— 1. If s < 5,

1 R 1o
Pr ~ 2612(21121157’) CXP[ lk?’l—zﬂil] ;
954 costy siny 1os s
+H(y—6,) I :krl e (')/—61)> exp [4ni —ikr, cos (6; — )]
1 H(O, .
4o ()~ Aag(o) exp — ik (34

Neither (33) nor (34) holds for 6, near .

The first terms of (33) and (34) can be regarded as representing a wave specularly reflected by
the shear layer, with R being counted as a reflexion coefficient which depends upon the angle of
observation ¢, and the Strouhal number s. The remaining term of (33), and its counterpartin (34),
is of a lower order and corresponds to a bow wave, generated by the primary wave exciting a
disturbance in the shear layer which travels faster downstream than the primary wave moves
along y = 0.

38 Vol. 284. A.
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If6, < y the bow wave is present and the convention on the meaning of win Ryleadsto |R| = 1.
Thus the bow wave arises when the phenomenon of total reflexion occurs.

If 6, > vy,

1—|R|? = 36vwus2£?/|4|?
evaluated at u = cosf,. Consequently, in those regions where the bow wave is absent, the
reflexion coefficient satisfies |R| < 1 and the energy is no longer totally reflected.

As s passes through s, there is a discontinuity between (33) and (34) in the region 6, > ¢,. The
discontinuity is initiated by u, leaving the real axis. It occupies practically the whole of the space
below the interface except for a small neighbourhood of the downstream direction where it takes
the form of a wave travelling practically undamped parallel to the stream but exponentially
attenuated perpendicular to the flow. As s is reduced the damping becomes heavy in both
directions and the last term in (34) can be neglected.

The question is whether such a discontinuous change should be permitted. Certainly the sudden
occurrence of a wave over such an extensive area should be detectable experimentally despite the
many other phenomena which are present in the real shear layer. One would be more persuaded
of its existence if it originated in a more confined realm and then grew.

The cause of the discontinuity is 4, departing from the real axis. It can be obviated by allowing
the contour of integration to go round #, even when it has left the real axis. The net effect, owing
to the regularity of the integrand, is to have a minute circuit round # = 4, added to the integral
along the real axis. A residue calculation then supplies

1
Pr~ a2 (2nkr )% ki *PL-
954 costy { siny
(2m)® a2b®\ kry sin (y —6,)

ikr, — 1]

3
+H(y—0,) J' exp [ ik, cos (6, - 7))

~ T )~ Aag o)) exp [ i), (35)
when s < s,.

The differences between (34) and (35) are profound. Whereas the last term of (34) is present
in a comparatively wide region and tends to decay exponentially, the last term of (35) is circum-
scribed to a relatively narrow downstream region (especially when s is near s,) and grows
exponentially. Clearly the last term of (35) is related to the Helmholtz instability of the shear
layer.

What experimental evidence there is would suggest that (35) is to be preferred to (34).
Admittedly, most of the experiments (Ollerhead 1966; Lowson & Ollerhead 1968; Dosanji &
Yu 1969; Tam 1971; Chan & Westley 1973) are with supersonic cylindrical jets rather than the
simple two dimensional subsonic shear layer considered here. But the photographs exhibit
directional acoustic radiation occupying a conical region next to the flow in the downstream and
Tam (1971) has verified that the angles are in accord with a cylindrical analogue of (35) for a
top-hat jet. Moreover, the same directional waves can be observed in the water tank experiments
described by Ffowcs Williams (1970) and which bear a closer affinity to the problem of this paper.

All things considered, therefore, it would appear that the formulae (33) and (35) should receive
our backing and that (34) should be rejected. In other words, we should expect the field not to
alter too dramatically with Strouhal number, with Helmholtz instability just becoming manifest
in the close vicinity of the downstream part of the layer as soon as the Strouhal number is less than
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critical, i.e. for the longer wavelengths of incident radiation or thinner layers. Later (§9),
analytical reasons will be adduced in support of this point of view.

The instability wave fills a sharp wedge when the Strouhal number is near critical but this
wedge fans out with diminution of the Strouhal number ultimately being of angle 45° when the
shear layer is very thin. This fanning out should be capable of experimental observation so that
this is one test of the theory which could be instituted.

While the theory has been developed for a constant sound speed in order to reduce mathe-
matical complication to a minimum, the evidence from previous studies dealing with instability
instigated by acoustic waves suggests that a variable sound speed would not alter the phenomena
qualitatively although quantitative changes are to be expected.

From another stand-point the presence of the wedge of instability wave near a jet, even when
there was no incident acoustic radiation, would indicate that there were sources perturbing the
flow at frequencies which made the Strouhal number less than critical. Whether the wedges due
to the sources of higher frequency would be masked by those of lower frequency would depend
upon the relative magnitude of the sources. Naturally, examination of the instability wave will
tell us nothing about sources whose Strouhal number is above critical. In particular, no instability
wave will occur for wavelengths less than six times the ratio of the width of the jet to the Mach
number.

To put it another way, when attracting someone’s attention in the presence of a wind, it is
desirable to use lower frequencies rather than higher. Since viscosity also affects lower frequencies
less than higher frequencies this is an additional argument in favour of the longer wavelength.
Some other implications have already been indicated in the introduction.

Finally, there is a mathematical point to be made. It will often not be feasible to make such a
complete analysis of a problem as has been achieved here, but knowledge of the instability waves
may still be desired. What the above implies is that, whereas 4 has many zeros which might
produce instability, it is only the one which comes off the real axis which does, in fact, generate
instability. A general criterion, therefore, may well be that one need only discover those zeros
which do move off the real axis as the Strouhal number varies and then assert that these provide
the sole origins of instability waves notwithstanding the existence of other zeros.

In connection with this last point we may ask why the indentation round the real zero of 4
when s > } cannot be drawn below by remaining on the same Riemann sheet. The field so
obtained would yield a solution of the governing equations which differed from the preceding
ones by a wave which was unattenuated parallel to the x-axis. The difficulty of the two zeros
coming together when s < } could be escaped by taking the indentation at the second zero also
below. All of these solutions are mathematically acceptable in the sense that they satisfy the
conditions imposed. Resolution of the non-uniqueness can be achieved either on experimental
grounds or by the imposition of further conditions. We shall return to this topic in § 9 and demon-
strate that by demanding that the solution be causal removes all the ambiguities and forces one
to have the solution which led to (35). In the meantime we shall proceed on the basis that this is
the correct solution.

4. THE TRANSMITTED WAVE

The field produced in y > £k, i.e. where the velocity of the main flow is again constant, is

3 [~ &u .
p=—5— _wjexp[lk(vy0+wh—wy—ux)] du
38-2
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from (24). Let n(u) = ux+w(y — k) —vy,.

Then it may be demonstrated, as in Jones & Morgan (1972), that n(«) is a univalent function of u
in the upper half-plane. Thus #’(z) has no zero for Imz > 0. By taking complex conjugates we
deduce that n’(x) does not vanish in Imz < 0. Hence any zeros of n’(«) must lie on the real axis
and it can be confirmed that there is precisely one zero, to be denoted by u’'. It satisfies
—1 < u' < 1/(M+1) when neither y— % nor y, is zero.

Furthermore, the curve Imz(z) = 0 through u = u’ goes steadily off to infinity without crossing
the real axis elsewhere. Atinfinity itis travelling in the direction arctan [{(1 — M?2)} (y — &) — y,}/x]
with the arctan chosen to be between 0 and ©. On the curve, Re n(x) increases steadily as # moves
away from #’. Consequently, this curve is a suitable candidate for the application of the method
of stationary phase.

When the contour of integration is deformed into the curve Imn(z) = 0 through u = ’, the
pole u = uj is captured (positively) only if Imn(u}) < 0 while the pole u = uj is passed over
(negatively) only if Imn(u;7) < 0. Thus any contributions due to poles, that are crossed, are
exponentially damped. In view of the discussion of the preceding section such contributions can
be ignored in estimating the far field with the exception of u,. For #, there are the analogues of
(34) and (35) but we shall give only the version corresponding to (35).

No branch line is encountered in the deformation of the contour so that there is no field with
the character of a bow wave in y > % so long as y, # 0.

The asymptotic evaluation of the integral gives for distant points of observation

Texp[—ikn(u') + }ni] | 3iH(u',u,)
p 2a%(2nkr')t Tz A’ (uy)
—6(r')% (s —khu')2w’
{-n"()paw) ~°

(s — khu)® exp [ — ikn(ug)1, (36)

where T =

n'(u) = z—g—ywsh (37)
and H(u', u,y) signifies 1if Imn(xz) = 01is to the right of u = uy, but zero if Imn(x) = 01is to the left
of u = u,. The quantity 7’ is a measure of the distance to the point of observation chosen to cancel
the variation with distance of #” so that T is independent of such variations. When M = 0, r’
reduces to {x2+ (y,+ & —y)?}}. This artifice enables 7 to be regarded as a transmission coefficient.

Again, an instability wave makes its influence felt but it is now less easy to describe simply its
position.

5. PLANE WAVES

If the source of the incident sound waves is allowed to go off to infinity the radiation near the
shear layer becomes a plane wave. To permit arbitrary angles of incidence change x to x — x, and
put xy = —7,c0s Oy, yo = —1,5in O, where 0 < 6, < n. Multiplying p by 2a2(2nkr,)¥ exp [ikr,+ Lni]
and letting 7, — oo supplies the incident plane wave exp [ —ik(x cos 6, +y sin 0,)] travelling at an
angle 0, to the positive x-axis. The term involving the reflexion coefficient R in (35) becomes
Rexp[ —ik(xcos,—ysin6,)] with R calculated at # = cos §,. The transmitted wave (36) contains
the term Texp[ —ikn(cosd,)] but now T is evaluated at u’ = cos 6, subject to 7’ = |y,| being
infinite.

If 6, > v, so that no bow wave can be generated, it follows from (37) that

w|T[?
sin?6,(1 — M cos 0,)%’

1—|R|%2 = (38)
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w having its value at 4 = cos 0,. Equation (38) expresses the energy conservation law for plane
waves (instability waves being disregarded) and is a generalization of one given for an abrupt
discontinuity by Ribner (1957).

If 6, < v, |R| = 1 and total reflexion takes place. The transmitted wave now decays expo-
nentially as y increases because w(cos 0,) is negative imaginary. Most of the transmitted energy is
confined to a neighbourhood of y = . Strictly, of course, the validity of (36) fails as 6, decreases
to less than vy because #’ is then situated in the vicinity of the branch point of w at 1/(M+ 1) and
a deeper analysis is necessary to disclose the exponential attenuation of the transmitted wave
when total reflexion occurs.

Naturally, these conclusions must be treated with reserve for Strouhal numbers and angles of
incidence at which instability waves would be anticipated in the original problem. In spite of R
and 7T remaining finite for these angles (the zeros of 4/u never lie in (—1, 1)) the energy balance
must be influenced by the energy requirements of the instability waves.

6. THE THIN LAYER

In the limit as k4 — 0 a discontinuous change in the flow occurs and the shear layer degenerates
to a vortex sheet. It is therefore of interest to examine how the reflected and transmitted waves
behave as kh — 0 and compare the results with those of Jones & Morgan (1972) for the excitation
of a plane vortex sheet by a line source.

It will be understood that s <€ 1, i.e. by a thin layer is meant that not only is the thickness of the
shear layer much smaller than the acoustic wavelength but also the Mach number is not too low.
Mathematically speaking, we fix M and let £/ shrink to zero.

If u is bounded above then |su| - 0 as s - 0. In these circumstances |£2/7| € 1 and first
approximations to fand g are provided by (A 2) and (A 3). Thus

A~ —3ius{w + (1 — Mu)?v} (39)
to a first approximation when # is bounded above. Assume that the same approximations can be
introduced even if # is unrestricted. Then it is found that (34) reproduces the formula of Jones &
Morgan when they do not invoke causality whereas (35) corresponds to their result when
causality is imposed. There is a similar remark about the transmitted field provided that y — A is
replaced by y in y > h. In making the comparison it should be remembered that their ¢ is
connected to our p by iwa?p = —{iw+ U(y) 0/0x} ¢.

Precise agreement with the results of Jones & Morgan can be attained, despite the possible
failure of (39) for unlimited #, if it can be demonstrated that the contribution of the integral for
large |u| is negligible as s - 0. For our purposes, this check can be circumvented by the observa-
tion that large values of u are not involved in the calculation of the distant field.

The only zero of (39) in the upper half-plane is

uy = $(X1+1x2),
1 1\? 2 3
where X1=-A7+(1+M‘§) s Xo = (TXJ—I_I)
to a first approximation. All the zeros uj must be of large modulus. This provides additional
confirmation that %, is the most important of the zeros of 4.
The inference of this section is that a thin shear layer scatters acoustic radiation in much the
same way as a sharp discontinuity if kh < M.
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7. THE THICK LAYER

Next consider the case where k2 > M so that sis huge. This layer may be regarded from severa
different aspects. It may be thought of as a layer which is many wavelengths thick. Or the transi-
tion in velocity from 0 to U may be considered as occurring over a large distance. Or the change
from 0 to U may be adjudged to be small. The last two possibilities can be covered by saying that
the layer has a weak velocity gradient. Whichever point of view is adopted is immaterial provided
that k& > M.

Consideration will be confined to the far field and attention will be concentrated on the
determination of R and 7. Therefore only values of # in the interval (— 1, 1) need be taken into
account. Except when u is near the origin, 7 will be great in magnitude when s > 1 and so
asymptotic formulae will be applicable. It turns out that fand g are rather more inconvenient to
work with than f; and g, (A 36, A 37) on account of (A 31). Accordingly, when « > 0, replace f
and g by their equivalent expressions in terms of f; and g;.

Begin with angles 3n > 6; > v so that total reflexion is absent and u = cos0,, satisfies
0<u<1/(M+1). Then

(1 —géz)i{T B 485z% “Z%Bo(z)}’

where { = /7 = sec 0, — M and zis expressed in terms of { via (A 16). B, is given by (A 34). Hence
uf1(€) —iwfi(§) ~ 2u(1-EEA(E).

There is a similar result if £ and w are replaced by s and v respectively but uf1(s) +ivf;(s) is of

§) ~ thexp[—inT—}ir+ tirln }r — Ini — 2728
1 Pl—s g47 Tz 3

lower order.
Similarly, from

¢
(1=t

g1(&) ~ thexp (—§nr+tir — Lirln 7+ &ni+ 2r2d)

5
3

{T + 482’}+Z Bo(z)},
ug;(€) —iwg,(€) is of lower order.

Substitution in the formula for R gives

Vo v

(1-Gy 2r(1- 09
where §, =secf;, v = (1—1£2) (1 -¢2)-1, v, is the same with {, for { and z, is obtained from
(A 16) with ¢, replacing ¢. In terms of the angle 6,

et cos 26, cos 20,
4scos® 0, tant O,  4scos 0, cos? O, tan? 0,

R

exp [$7(zF - 2)],

R~

x exp [#ni +is{(1 — M cos 6,) tan 0, — tan 6, + cos O, (arccosh sec &, — arccosh sec 0,)}], (40)

where 0, is the angle between 0 and }= such that sec 8, = sec 0, — M.
Correspondingly, we find

r’ }%(1 — Mcos ')t

T~—i=

—n"(u')] sin¥ 0’ sin G,
x exp [3is{(1 — M cos 0) tan O, — tan 0’ + cos O’ (arccosh sec §' — arccosh sec 03)}], (41)
where cos@ =u',secly, =secd' — M
and now n"(u') = y,cosec® O’ — (y— k) cot®Oysec®b'.

An extended region of validity for this formula will be indicated in the succeeding section.
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It will be observed from (40) and (41) that Ris an order of magnitude lower than 7. Thus little
energy is reflected from a thick layer at angles for which there is no bow wave. Most of the
incident energy at angles for which there is no total reflexion passes through the shear layer and
emerges with a transmission coefficient given by (41).

When 6, < y or u > 1/(1+4 M) the foregoing estimates do not hold any more since ph z alters
from —x to 0. For example, ug;(§) —iwg, (£) is no longer of a lower order.

When account is taken of the necessary changes we obtain

R ~ exp[ — }it+ irIn {7 — mi+ir(arccosh sec 0, —sec 0, tan 6,)], (42)

where 7 = scos 0. Thus |R| = 1, asit should, in accordance with the general result of § 3 for total
reflexion. It is not strictly necessary to contemplate the possibility that u’ > 1/(M + 1) for T since
it never occurs. Wherever energy would have reached the far side of the shear layer but for total
reflexion the factor of 7"in (36) would be exponentially damped indicating that only an evanescent
wave was transmitted.

Broadly speaking, therefore, we may say that the energy incident on a thick layer is either
barely reflected and issues from the layer with transmission coefficient (41) or is totally reflected
and, beyond the layer, is evanescent.

Some of these results should be deducible from ray theory because there are many wavelengths
in a thick layer. This possibility is examined in the next section.

8. RAY THEORY

In ray theory the field is assumed to vary as A,e~%® where 4, is an amplitude factor and the
gradients of the phase k® are large compared with other gradients. @ satisfies an eikonal equation
while 4, is determined by the conservation of energy along a ray tube. However, care is necessary
when a background flow exists because the rays are, in general, not normal to the wavefronts.

Consider a ray leaving the source at the angle ¢, to the positive x¥-axis. Then, it can be shown
(see, for example, Broadbent 19775) that on the ray at a point where the wave normal makes an
angle ¥ with the positive x-axis

asecy+ U(y) = asecy,. (43)

The inclination of the ray to the x-axis at that point is asin {U(y) + a cos ¥}~1. The differential
equations governing the ray are

dx/dt = U(y) +acosy, (44)
dy/dt = asin . (45)

Below y = 0, U(y) = 0 and the ray is a straight line. Take ¢ = 0 at the source. Then the ray
strikes the interface y = 0 where at = —y, cosec ¢, and x = — y, cot ¥,.

The change of x in the traverse of the strip 0 < y < £ can be determined from integrating
dx/dy by (44) and (45), after substituting for ¥ from (43) and putting U(y) = May/h. The resultis

h
0= [ (@xjdy) ay

= (hf2M)sec o[tanyyy— (1 4+ M cos 3,) tan ¢y + cos ¢y (arccosh sec ¥y — arccosh sec y,)], (46)
where sec ¥, = sec ¢, — M.
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Consequently, the equation of the ray in y > A is

x = % —yocot Yo+ (y — k) (M+ cos yrp) [sin ¢, (47)

For given ¢, the path of the ray is straightforward to trace but the converse of elucidating the ray
which passes through a given (x,y) requires the solution of (47) for ¢,—a difficult matter, in
general.

In asimilar way, the change of ¢ along a ray can be derived from d¢/dy integrated with respect
to y. The change in at is also the variation in @. Initially, @ is zero because near the source the
field is

exp [ —ikr — }ni]
2a?(2mkr)t
at short wavelengths. Therefore, in y > 4,
D = —y,cosec Yy — (kM) (tan ¢y —tan y,) + (y — k) cosec ¢r,. (48)
The next hurdle to surmount is the derivation of the amplitude 4,. On a ray A, satisfies

A2la+ U(y) cos Y} [{U(y) +acos Y}2 + a®sin? Y]t = constant,

where [ is the perpendicular distance between two adjacent rays. To find the constant, first take
the factor e=3™ of the source to be a constant multiple to be applied to the whole. It may therefore
be ignored in 4, until the completion of the calculation. With that understanding the constant is

3(cos¢,y) [8mkadsin ¢,

if the inclinations of the two contiguous rays are ¢, and ¥, + 0, respectively.
The perpendicular distance between two nearby rays is given by

H(offox)? + (2f[0y)}E = [offorfrg| 8¢
if the equation of a ray is f(x, y; ;) = 0 (cf. Jones 1964). Define

1h

N(u) = n(u) —-2—1—‘2[[(1 — Mu) g—~§+ u{arccosh% —arccosh (% —M)}] .

Then it may be verified in a straightforward fashion that N’(x) = 0is the same as (47) when u is
identified with cos i/,. Hence, in y > 4,

l{l + (A%c;s_z_gﬁ_z) 2}1} = N"(cos ) 8(cos ).

It follows that

—}mi - ¥
4, = e { 1—Mcosy, }

242 |2nkN"(cos i) sin ¢, sin yr, (49)

the factor e~1™ having been restored.

The field 4,e-#?, as given by (48) and (49), is now to be compared with Texp[ —ikn(u’) +
ini]/2a2(2nkr’)} with T supplied by (41). If, in N(u), x is replaced by its value from (47) and
put equal to cos ¥, then N(u) is found to agree with — @. On the other hand, — N(u') is the same
as the phase of the transmitted wave determined via (41). There is therefore agreement on the
phases ifu’ isidentified with cos 1,. Recollect that (41) is a far field approximation which is equiva-
lent to neglecting #, in (47) and it will be seen that the identification is legitimate. Similarly,
the amplitudes are in accord to the same degree of approximation.
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Thus the asymptotic analysis of § 7 and ray theory harmonize at distant points of observation.
This empowers one to extend the region of validity of (41) to other points (x,y) than those
originally in mind. It is only necessary to choose #’ as the root of N'(x) = 0 instead of satisfying
n'(u) = 0. Thereplacement of #” in the denominator by N” accomplishes the wanted modification.

There is one special case of some interest. If 1/, = 4=, the formula for 7 simplifies to

T = —i{r'|(y—yo) }-

This expression is noteworthy for being independent of 2 and M. There is thus a tendency for
observations in directions looking almost perpendicular to the stream to appear as if there were
no stream in so far as amplitude is concerned. Amplitude measurements beyond a thick layer will
be inclined to be the same whatever the flow when made in a direction transverse to the stream.

9. CAUSALITY

The question of the uniqueness of the solution to the harmonic problem has already received
some attention in § 3. The matter was settled by a plausible argument coupled with an appeal
to experiment. A similar difficulty arose in the discussion of the plane vortex sheet by Jones &
Morgan (1972) and there the ambiguity was resolved by the physical principle of causality,
namely that the answer for harmonic waves should be consistent with a field in the time domain
which is zero before the acoustic excitation is switched on. In § 6 the two resolutions have been
shown to be in harmony for the infinitesimally thin layer. The query to be dealt with now is
whether the implications of causality would force a different solution from the one adopted if
h # 0. In particular, it is desirable to know whether causality induces ultradistributions in the
time domain as it does when £ = 0.

A direct attack through a formulation in the time domain can be evaded by taking advantage
of the general theory of Jones & Morgan (1974) which is based on an examination of the complex
k-plane. Up to this point £ has been assumed to be real and positive. Now suppose that £ is per-
mitted to have a negative imaginary part. Specifically, let £ = |k| e~** where, for the moment,
0 < a < 37 so that the real part of £ is not allowed to have negative values. Let us re-examine the
solution already established for real £ to see whether it can be adapted to cope with complex £.

Take the path of integration in (21)-(29) to be, instead of the real axis, the line obtained by
rotating the axis anti-clockwise through an angle a. Thus the contour starts at —ocoel* and
terminates at co i, There is then no difficulty in checking that the arguments justifying (21)—(29)
as a solution are still of substance. A typical integral to be evaluated is f

1 [ oexplix]
Pr=—— A(k, u) exp [ikvy —1kux] du,
21 ) — exp [ia]
where the dependence of 4 on £ and u has been explicitly indicated. The change of variable
u = [k leads to

1 [ . .
pr =gz | Al A1) expLip(h2— )1 ~i6:] 45 (50)
with £ real. In this form it is evident that the integral is a regular function of £ subject to the
proviso that the integrand has no singularities on the path of integration. The branch points of v

and w do not lie on the contour unless & = 0, a case which has already been dealt with. Therefore
the only situation in which regularity can fail is when the path of integration passes through a

39 Vol. 284. A.
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zero of 4. Itis consequently vital to decide whether 4 has a zero on the contour when £ is complex.

In effect, such a decision would depend upon a full determination of the zeros of 4 in the
u-plane for every complex £ —a formidable undertaking in the light of the effort required when &
is real. It will, however, be sufficient for our purposes to investigate what happens as |k| - co. In
the subsequent analysis # will always be non-zero so that |s| — oo as |k| - co. Further 7is real and
|7| = oo apart from when u & 0. Thus asymptotic approximation is on the cards but the earlier
analysis, based on s real and |s/7| small, must be set aside and a fresh approach is necessary.

Consider firstly the case when 7 is positive. Let {, = s/ = 1[u so that 0 > ph §; > — }=n. Put
{=—§/r = M—1[u so that { has a positive imaginary part. Then, if { = cos (or+ic;) as in
appendix A, {e 2'if 0 £ o+ < $n. From (A 31), it follows that

A~ f'(=E)+ (1=CRf (IS () - (1= ()} —g () + (1-Eig(s)]  (51)
for 0 < o < $n provided that ¢ is not near 0. This possibility can be excluded by imposing the
condition |M—1[u| > & > 0.

Now f/(~8+(-gif(~8) ~sebrbet g 12E) i AiGrtz) - Avrh2)

where zis given by (A 16). Since u is kept away from the branch points of w, |z| is bounded below
and the arguments of the Airy functions are large. Asymptotic approximations can therefore be
employed but the appropriate forms depend upon ph z which can range from 0 to —=. In all
cases the dominant behaviour is found to be

(=8 +(1=EYf (&) ~ Brexp[{nr] {(1 - {2)¥exp [ —§rzt] (52)

for 0 > phz > —n (compare also (A 25)). The right-hand side can vanish only if { = Oor { = 1
or 7 = 0. The first two possibilities have already been excluded and the third one must be rejected
because 7 has been taken large in (52). Hence the first bracket of (51) does not vanish for the
values of  permitted to date.

With regard to the last factor of (51) we remark that

S(8) = (1=ES(s) = {f'(s*) + (1 = G f(s*)}* (53)
because 7 is real. Proceed similarly for the g-terms. They may then be combined with the f~terms
because of (A 81) since 0 < ph{f < 3n. The result is a factor similar to the first factor of (51) in
complex conjugate form. Applying (52) in the relevant guise we deduce that 4 has no zero for
the values of u so far considered.

Next suppose that —§/r gives a or which exceeds $n so that it may not be in &’. Here it is
advantageous to operate with £/7 and to put { = — M+ 1/u, so that now 0 > ph{ > —in. In the
same way as (53) was derived

(Afu?)* = {g'(&*) = (1= T*)rg(E*)H S (s*) + (1- &)1 (s%)}
—{f'(E*) — (1= (E*) He (s%) + (1 - &) g (%)}
and 0 < ph{&* < in. Let {* = cos (or+i0y), {F = cos (ory+ioy,) so that 0 < or < 47 though
0 < or < in will suffice for our needs. Then o > oy and, since Im {* = Im {, o; > 0y If

228 = L(or+io;) — Lsin2(or+ioy)
and %‘Z% = §(oro+ioy) — isin 2(org+ioy),

Re4(zt —z8) = oy — 0rg— } sin 20 cosh 207; + } sin 20+, cosh 207,
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But sin 20 sinh? oy = cot oy tan o7r Sin 207y sinh? o7y,
since Im {* = Im . Further 0 < tan oyycotor < 1 for 0 < oy < 0 < $7. Hence
Re4(zf —z3) > or—}sin 20— 0'rp + 4 8in 207y > 0

since ¥ —sin ¥ is an increasing function of x.

Evidently, terms with exponent 27(z} —z8) in (A/u2)* will dominate those with exponent
—327(z% — 2}). Before substituting uniformly valid asymptotic formulae it is convenient to replace
g by g, via (A 37). The structure of (4/u?) * is unaltered apart from multiplication by a non-zero
constant. Taking account of possible variations of phz we find that in all cases (4/«2) * is a non-
zero multiple of exp 47(z% — z§). Again, 4 has no zero.

It has thus been established that 4 has no zero for positive 7 subject to the restrictions |¢| > 3,
|| < 1/6 and |u—1/M]| > 6.

For negative values of 7, first replace 7 in the second arguments of fand g by |7|, a process which
has no effect on fand g. Choose now ¢, = s/|7| and { = M+ e~1*[|u|. Then

uf'(s) +ivf () = a{f'(s%) — (1= GBS (s*)}*

and there is a similar form for the terms involving £. Consequently we have the same com-
plex conjugate form of A4 as that just discussed but with s* and £* interchanged. Moreover,
Re (28 —2z§) < 0. On this occasion, we obtain a non-zero multiple of exp 2|7| (Z5—2%) as the
dominant term. Once again 4 has no zero.

It has now been demonstrated that the only places where 4 might have a zero on the contour of
integration are contained in the regions |u| < 8, |4| > 1/6 and |u— 1/M| < 8. The first of these
occurs because the preceding analysis demanded that |7| > 1. It can be made arbitrarily small
by prescribing it as |u| < |s|~ which would continue to keep |7| large outside. But near the origin
(A 43)—(A 46) imply that the only zero actually coincides with the origin. However, such a zero is
automatically cancelled in the integrals by a corresponding one in the numerator. The region
|| < & may therefore be discarded.

For |u| > 1/8, the appropriate formula is (51) but now the asymptotic expression for f (s) goes
awry because {, can approach the singularity at the origin. This difficulty can be overcome by
using (A 58)—(A 60) which are uniformly valid as k = s/T — 0. The result is that the second factor
of (51) is a non-zero multiple of (47Z% — 1) where Z is given by (A 57). This can disappear only
if Z% is very small but then Z* ~ }x and the expression reduces to 25— 1 which cannot be zero
because |s| > 1. Hence 4 has no zeros in |u| > 1/8if 7 is positive. For negative 7 the application of
the complex conjugate technique already employed directs one to the same conclusion.

The only outstanding region where there may be a zero is |u — 1/M| < ¢. Handling thisin the
ame way as |u| > 1/6 we discover that 4 is a non-zero multiple of

drZ%exp (27Z%) —exp (—272Z%),

where now k = M — 1/u. This expression vanishes when 47Z% = ¢, where ¢, is the positive zero of
tet = 1. Consequently, Z¥ ~ 1k and the zero lies where Mu = 1+ £,/2s. For real s, this gives a real
zero of A near 1/M in conformity with what is known from appendix B. Only small values of «
occur in the region. When « # 0, the zero is above the real #-axis but below the path of integration
which is along the radius vector from the origin through ei*, We deduce that this zero causes no
trouble so long as it is skirted by an indentation above when s is real.

39-2
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Accordingly, it has been proved that 4 has no zero of relevance on the contour of integration
if |£| is sufficiently large, say |k| > K, and 0 < phk < in. This establishes that the integrals for p
are regular functions of £ in this part of the £-plane. It remains to tackle the topic of £ having a
negative real part.

Let £ be purely imaginary and Imk < — K. Then (50) holds with £ = —i|k| and provides a
continuous function of £. Furthermore, a change in the sign of £ gives

pe = gty AC=ilH], i) exp (k12 + £33 +ips}dp
This is the complex conjugate of (50) if
{A(-1[kl,ip/|kD)}* = —A(-i]kl, —ip/|k])

or, equivalently, {A(-i |k|,u) * = —A(—i |k|>”*) (54)
when # is purely imaginary.
In these circumstances {f(&n)}* =f(s*71) =—=f(s, —7)

remembering that 7 is real. Moreover

{fE )} =S (s*(1 - Mu¥),7) = =f (s(1— Mu*), —7)

and {v(u)}* = v(u*), {w(u)}* = w(u*). By using formulae of this type and observing that v is real
we can confirm that (54) holds. It follows that p; is real on the negative imaginary k-axis when
Imk < —K.

Likewise, it may be checked that (24) and (27) supply real values of p on the negative imaginary
k-axis as well.

The integrals discussed so far are all functions of k. Denote a typical one by p(k). Define p(k)

for Rek < 0 by k) = {p(—k*)}*. (55)

The field so defined is continuous and real on Rek = 0, Imk < — K. Therefore, by the
Riemann-Schwarz principle of reflexion (Titchmarsh 1939), (55) provides an analytic continua-
tion into Rek < 0. Thus p, as defined by (55), is regular throughout Imk < — K. Indeed, since
regularity has been demonstrated for Rek > 0, |k| > K the definition (55) supplies a regular
function of £ in |k| > K, Im£ < 0. Its only singularities in Im £ < 0 will be at certain points in
|¥| < K, Rek > 0 and their mirror images in the imaginary £-axis.

It is evident that the integrals tend to zero as Imk — —co. Hence p, as defined, is a regular
function of kin Im £ < — K which tends to zero as Im £ - — co. It is therefore certain that p is the
Fourier transform of a causal solution in the time domain. Allow £ to become real and positive
while staying the region |£| > K. Then, no singularities of p are encountered and the integral
changes steadily to its value with & = 0. This means that the integrals accepted in § 3, for example,
are recovered if k¥ > K. In other words the integrals of § 3 certainly originate from a causal solution
in the time domain if £ > K. From our knowledge of the behaviour for real £ we can be sure of
their correctness for s > 5.

The statements just made depend upon it being right to place the indentation at the real
positive zero of 4 in the u-plane above the real axis. This procedure has already been justified by
our discussion of the region |u — 1/M| < & which shows that, as Im £ — 0, the zero tends to the real
u-axis from below the contour of integration. Had the approach to the real u-axis been above the
path of integration an additional wave would have made its appearance in s > s,.
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It is not possible to deduce immediately the solution for s < 5, from that for s > s, by keeping
k real because the fusing of the two real zeros in the #-plane is responsible for the creation of a
branch point in the £-plane roughly of the form (k — Msy/h)~%. The correct choice of branch is
indeterminate if real values alone of k¥ are considered.

The points where s < 5 or k& < Msy/h cannot be reached from Im £ < — K without crossing the
region |k| < K where the integrals may possess singularities, due to poles appearing on the
contour of integration. However, the function will vary continuously unless no route can be found
in the k-plane which arrives at the real axis without intersecting a branch line of the function. The
singularities of the function occur in pairs which are mirror images in the imaginary £-axis.
Therefore, if one of the pair is a branch point so is the other. Hence the branch line from one
terminates at the other since it certainly cannot intrude on || > K. The branch line may be
conveniently drawn as the straight line joining the two points. Thus, by selecting a track which
circles any branch points or isolated singularities we can alight at the real axis with continuous
variations in the function and the real axis must be approached from below.

On this basis, the solution for s < s, must be obtained from that for s > s, by continuous varia-
tion as s by-passes sy by a trajectory in the lower half of the complex s-plane. This implies that
u = uymust be surrounded by a small circuit as it leaves the real #-axis and that (35) is the correct
formula for s < s, according to causal considerations.

The contrast between the cases 2 = 0 and % # 0 is strong. If 2 = 0 and the layer is abrupt,
causality cannot be satisfied without the introduction of ultradistributions in the time domain.
Correspondingly, Helmholtz instability is manifest in the frequency domain and exponentially
growing waves are present. There are also instability waves in the frequency domain if 4 # 0 but
they are not related to ultra-distributions in the time domain because they disappear when s is
big enough. Accordingly, they correspond to conventional functions and there is no awkward-
ness in physical interpretation.

At first sight it may perhaps be unexpected that, although the instability wave in the frequency
domain for / # 0 tends to that for 2 = 0 as 2 — 0, ultradistributions are not necessary in the time
domain for both cases. Toillustrate how this can happen we consider the simple example in which
the instability wave has the special form exp[ —ikdx] where d is a complex constant and £ is
positive. For negative £ the rule (565) makes it exp [ —ikd*x]. Assuming that it is present only for
|k| < C when £ # 0, we obtain for the corresponding field in the time domain
0

exp [ik(at —d*x)] dk
¢ .
- %exp [1iCh,] sin 3Chy + — exp [ — 3iCH¥] sin 3CB, (56)

bt

f: exp [ik(at — dx)] dk+f

where b; = at—dx. If C - oo as h —> o0, the instability wave becomes exp [ —ikdx] for all positive &
in the frequency domain but the right-hand side of (56) becomes the ultradistribution

{8 (by) + 8 (b3)} +i{br — (b3) )

This illustrates the different effect of the limiting operation in the two domains.
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10. CONCLUSION

Our discussion of the simple shear layer has exposed the fact that there is a critical Strouhal
number below which Helmholtz instability occurs. The instability corresponds to a conventional
function in the time domain and experimental tests for the model have been conjectured in § 3.
In particular, the continuous variation of the field with complex Strouhal number is at the heart
of the matter.

It has been shown that as the thickness of the layer shrinks the solution goes over to that for the
vortex sheet. The vortex sheet may therefore be regarded as an adequate model for the very thin
layer.

Complete agreement between ray theory and the exact theory in the regions where rays
penetrate has been accomplished for layers with weak velocity gradients.

REFERENCES

Broadbent, E. G. 1975 J.ILM.A. (in the press).

Chan, Y. Y. & Westley, R. 1973 C.4.8.1. Trans. 6, 36.

Dosanji, D. S. & Yu, J. C. 1969 Proceedings of AFOSR-UTIAS Symposium of 1968.
Erdélyi, A. 1953 Higher transcendental functions. New York: McGraw-Hill.
Erdélyi, A. & Swanson, C. A. 1957 Memoirs of Am. Math. Soc. No. 25.

Ffowcs Williams, J. E. 1970 Inaugural lecture at Imperial College of Science & Technology.
Goldstein, M. E. 1974 NASA SP-364.

Jones, D. S. 1964 The theory of electromagnetism. Oxford: Pergamon Press.

Jones, D. S. 1974 Proc. R. Soc. Edinb. 72, 195.

Jones, D. S. & Morgan, J. D. 1972 Proc. Camb. Phil. Soc. 72, 465.

Jones, D. S. & Morgan, J. D. 1974 Proc. R. Soc. Lond. A 338, 17.

Lilley, G. M. 1974 AGARD CP-131, 13.

Lowson, M. V. & Ollerhead, J. B. 1968 J. acoust. Soc. Am 44, 624.

Ollerhead, J. B. 1966 Wyle Res. Rep. WR 66-44.

Olver, F. W. J. 1954 Phil. Trans. R. Soc. Lond. A 247, 307.

Olver, F. W. J. 1974 Asymptotics and special functions. New York: Academic Press.
Rayleigh, Lord 1880 Proc. Lond. Math. Soc. 11, 57.

Ribner, H. S. 1957 J. acoust. Soc. Am. 29, 435.

Tam, C. K. W. 1971 J. Fluid Mech. 46, 757.

Titchmarsh, E. C. 1939 Theory of functions. Oxford University Press.

ArPENDIX A

This appendix is devoted to a discussion of the properties of solutions of

dzﬁ_%d_ﬁ_(l_ﬁ) 5=0 (A1)

T2

in the complex - and 7-planes. For fixed 7, (A 1) has a regular singularity at £ = 0, the exponents
being 0 and 3. The usual series expansion gives two independent solutions which will be denoted
by fand g. The leading terms of the series expansions, which are convergent in the whole finite
part of the £-plane, are

FE7) = e+ o8+ 55 () 7+ (A2)
g(&7) = 1—%52—i(%+712)£4+.... (A3)
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The expansions converge for all finite complex 7, apart from 7 = 0 whichis an essential singularity.
With this exception it is clear that

f(_ga7)= —f(gaT)a g(_gaT) =g(§’T)’ (A4)
f(g3 _7) :f(gaT)a g(ga _T) =g(ga7)' (A5)
When no confusion will arise, the explicit dependence of f and g on 7 will be dropped and the
notation f(§) and g(£) adopted.
The solutions can also be expressed in terms of Whittaker functions or of confluent byper-
geometric functions. The relevant formulae are

£(©) = expl Bl gty (£) = po (3-din g5 D) exp (). (A9)

(&) = exp [Ani] THEIMy,, 4 (172)
=¢(-—;}—ii‘r, —1 52)6 p( 1g:) an

in standard notation (see, for example, Erdélyi 1953).
It is an easy deduction from (A 1), (A2) and (A 3) that the Wronskian

S(8) &' (€)—S"(§) 4(§) = — 3¢ (A8)
primes indicating derivatives with respect to &.
Also {f@S (&)Y =SE+ (1= E&[r) f2[E

so that, if £ and 7 are real with £2 < 72, ff'[£%1s an increasing function of . Since it is zero at § = 0,
it must be positive for 0 < £ i.e. fand f’ are both positive for 0 < £ < 7. Furthermore, since

&' =3)" = e -8/ f,
we conclude that f =3l f=z8&, f >3 (A9)
on0<§<T.

Similarly, gg’/£%is an increasing function of . It starts from negative infinity at § = 0 and so can
change sign at most once on 0 < £ < 7. Therefore, at most one of g and g’ can pass through a zero
as £ goes positively up to 7 from the origin.

The behaviour near the essential singularity at 7 = 0 can be derived from the asymptotic
formula for the confluent bypergeometric function. As |z| - oo

®(a,c; z) —(( :3, Zz“-”{1+( )(1—a)§+0(|—§p)}
+ e (3) [i-atamernz+o(p)) (A1)

for 0 < phz < © where phdenotes the phase or argumentof z. Hence, if § is fixed and ph (7/£%) = 0,
(A 6) and (A7) supply

S (&) = (31/1") 28k cos (§m — 1(€%7)), (A1)
(&) = (3!/}") 2£¥rksin (§m — §(8)), ' (A12)

8(&) = {(—= Y (—)1} 2&tr cos (3n + $(£%/7)), (A13)
(&) = —{(= (-} 28 rEsin (In+ 3 (87)) (Al4)
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as 7 - 0. These approximations are not reliable when ph (7/£%) # 0 because the neglected terms
can then be exponentially large and of the same order as the terms retained. Some formulae
which do not have this failing will be given later (cf. (A 43)).

The performance as |7| — oo is less simple because it is necessary to allow in our applications
for £ being large and complex as well. Some results concerning the asymptotic behaviour of
Whittaker functions can be found in Erdélyi & Swanson (1957), Olver (1974), but they do not
cover the range of parameters required here. The appropriate formulae can, however, be deter-
mined by means of the technique due to Olver (1954). No attempt is made here to calculate error
bounds although they could be obtained by the method described by Olver (1974).

Make the change of variable £ = {7 and put f = {w. Then the differential equation for ftrans-

forms to 9
dzw/d§2+{72(§2— 1) ——g—z}w — o0, (A 15)
Introduce the variable z, defined by

zidz[dg = - (1-¢?)%
R 14
so that 32 = —fl (1—#2)tdt = Larccos§ — 3¢(1—&2)%. (A 16)

Apply the Liouville transformation
w = (dz/d{)t W

to (A 15) and then d2W/[dz? = {122+ h(z)} W, (A 17)
2 (dg\2  (dg\® d? (dg\ -t
where h(z) = z ((—E) + (&) P (d_z)
2z 5  z(2+38?)

TE-) TR im0 A1
The mapping (A 16) is multiple-valued. To achieve a precise relationship let o = o¢+1i07,

where o; and o, are real. Put
{=coso, (1-¢3)%=sino,

2784 = 1o 15j
$2? = 30 — 1 s1n 20,

The upper halfofthe {-plane corresponds to 0 < o < 7, 0; < 0and thelowerhalfto —n < or < 0,
o; < 0. In fact, we shall not be concerned with the whole of the {-plane. Instead, a cut will be
inserted in the z-plane along the positive real axis from (3n)¥/4 to co. The range of ph z will then
be specified by —2n < phz < 0. The region of the z-plane below the real axis then maps one-to-
one on to the upper half of the {-plane limited on the left by the image of the cut. This image runs
along the negative real axis from { = 0to { = — 1 and then follows a curve in the upper half-plane
until it is eventually travelling towards oo ed™. Its exact location off the real axis is not relevant to
our investigation but it is certainly to the left of the hyperbola o; = $=. Similarly, the remaining
region of the z-plane is mapped into the lower half of the {-plane bounded on the left by the
image of the cut. In this case, the curved portion is eventually moving in the direction of oo e—imi
and is to the left of or = — §n. Denote by 2 the region of the §-plane which is mapped one-to-one
onto the z-plane by the above process.

It may be verified readily from (A 18) that A(z) is regular in the cut z-plane and O(|z|~2),
uniformly with respect to phz, as |z| - . The preliminary conditions of Olver’s theory are
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therefore met when 7 is real and positive. Hence, it may be asserted that there is a solution W}
of (A 17), such that, as 7 - oo,

. As(2)| | Al (t¥z)  Bs(z
W) = Air) {1+ 3 242 AT 5 o (A 19)
where Ai (x) is the standard Airy function and
By(z) = 5 f " () () — A1)} s, (A 20)
Z2Jo

Asya(2) = —4By(2) +4 [ h(2) Bs(t) dt

subject to the starting condition 4,4(z) = 1.

For (A 19) to be valid the area above the cut and below the level curve of exp (— $z%) through
the end of the cut must be excluded. In effect, this exclusion removes the remainder of the third
quadrant from Z. Let 2’ be the domain so obtained.

Now investigate the possibility that, as 7 — oo,

Sfr,m) = AL(z|(1-82))2Wy(2),

Abeing independent of { which liesin &’. The constant 4 is identified by allowing ¢ — co along
the positive real axis. From (A 6) and (A 10),

f(&r,7) ~ 884 et cos (382 — in— i1 — $71n 20) (A21)

after employing Stirling’s asymptotic formula for the factorial functions involving 7.On the other

hand, as { — oo,
32t ~ (32— §In2g— ) et

and hence AL(z]/(1—82) Wy (2) ~ (AL [ndrd) cos (342 — dn —}r—J71n 20). (A 22)
It follows from (A 21) and (A 22) that 4 = 3nir%el™ and therefore
Sf(&r,7) ~ Sndrdetm{(z](1-£%)t Al (rh2) (A23)

as 7 — oo with {in &’. A higher order approximation is achieved by replacing Aiin (A 23) by W,
as given by (A 19), and calculating the coefficients 4s and B from (A 20).
The general theory implies that

F(Lr, ) ~ — Sbrh ety (l_jf)* A (82) (A 24)

as 7 —> oo with {'in 2’. It is worth noting that, because of the asymptotic behaviour of the Airy
function and its derivative,

S'(&r, 1) ~ (1=82)if (¢, 7) (A 25)
whenever |z] 26 > 0,0 > phz> —%rnand Im¢{ > 0. Also
S, 1) ~ = (1= f(¢r,7) (A 26)

for |z| 26 >0, —4n > phz > —2rand Im{ < 0.

Both (A 23) and (A 24) hold uniformly with respect to { in &’'. Asymptotic formulae for a
somewhat larger region can be obtained immediately, when 7 is real, from the observation that
F(&*) ={f(£)}* for real 7, the star signifying a complex conjugate.

40 Vol. 284. A.
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When 7 is complex let it be 7, € where 7, is positive; for the moment, attention will be devoted
to the case where |0| < }n. Putting z = z,e~% converts (A 17) to

d2W|[dz = {13z, + e 80 h(z,e—$10)} W

Because of the similarity in form to (A 17), the same treatment may be applied. The cut in the
zy-plane is that of the z-plane but rotated anti-clockwise through an angle 26/3. In the {-plane we
continue to work with the domain &’. There is still an expansion of the form (A 19), butin terms
of 7, and z,. We try to discover the appropriate form for f by making z, - o0 e=™. The formula
(A 21) is valid for 6 > 0 provided that ¢ is not near {x.

In this way, we arrive at the important conclusion that (A 23) and (A 24) are valid uniformly
for {in 2’ as |7| > oo with 0 < ph7 < §n—6, 6 > 0.

When fis near r, (A 21) fails because of the change in the asymptotic behaviour of the factorial
function. For @ near {r, (A 21) must be replaced by

f&r, ) ~ 8% elnr(1 —ie~dm) cos (§¢2r — in— 11— 471n 20)
+ 387 exp (3ni— it — T+ JHEr — JirIn 20).
A representation in terms of Ai (7§z,) alone is no longer adequate and a term involving

Ai(r} 2, e~¥™) must be added. Observing that, as z, - coe—i , { - coe—#9 and so is well within
2' we have

F(Lr,7) ~ 3miriL (l—f—@)i (b Ai(rdz) 4+ e—brizbrr Aj(rhz e—dm)), (A27)

uniformly for {in 2, as || - co with irn > ph7 > }n—¢. Remark that the difference between
(A 27) and (A 23) is exponentially small when 0 < ph7 < 4n—d& and so (A 27) could be regarded
as including (A 23) and covering the whole range 0 < ph7 < }=.

The analogous formula for the derivative is

f(lr, 1) ~ —3rir¥l((1—£2)[2)E {elm™ AT’ (182) + e~¥mi~in7 Al (r¥z e—8™)} (A 28)

when ph 7 is near 4r.
A similar procedure may be adopted for negative values of ph7. The results, analogous to
(A 27) and (A 28), are

S(&r,7) ~ 3ndr3¢(2/(1 - &%)} {exp [4n7] Al (r82) + exp [ni — {nr] A (rzexp[§ni])} (A 29)

an
S'(&r,7) ~ = 3ndrd((1— %) [2)} {exp [{n7] Al (riz) +’6XP [8ni — 4n7] A’ (rizexp[§ni])} (A 30)

for ¢in the mirror reflexion of 2 in the real {-axis.
Comparable results for g may be derived by the same mechanism. It is found that

g 1) ~ =3 (¢r,7), &' (Er7) ~ —3S'(¢r,7) (A31)
for |ph7| < $n —4. The analogues of (A 27) and (A 29) are
8(&r,7) ~ —ndr¥g(z](1—£%)} {exp[in7] Ai (18z) — exp[ — §mi — fn7] Ai (rizexp [ —§ni])} (A32)
and : ‘
8(8r,7) ~ —mir¥(z](1-¢2))¥ {exp [4n7] Ai (r8z) — exp[}nmi — fn7] Ai (rzexp[§ni])} (A 33)

respectively.
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Higher order approximations can be written down from (A23)-(A33) by replacing
Ai (t3ze¥™) forj = 0, + 1 by

Bs(2)

T28 ?

Ai(rdzexp[3jni]) {1 +3 Ajﬁf)} +ZB Eif ™1 Ait(rhz exp [3i]) =
s=1 <

where As and Bg are defined in (A 20). In this connection it should be remarked that

5 z(2+3¢2)

BO(Z) = 'i—t;;z‘—‘i(—l'_—gz)—é'. (A34)

On account of (A 31) an additional result is required to cope with the particular combination
S+ 3g. It may be verified without difficulty that

g(&r, 1) + 5 (&r,7) ~ 2mbriexp[ —dmi — fnr] {(2/(1-£%)  Ai (rhzexp[—4ni]) (A 35)

for |ph7| < 4n— 68 with a corresponding relation for the derivative.
It is convenient to have available for various evaluations solutions of (A 1) other than fand g.
Particular linear conbinations of f and g which play a useful role are defined by

T% —gmi
£O = 8 (_ EH).f() (' )] (A 36)
(- Ligdet
a8 = (_gw,).f(g L, (A37)

with |ph7| < n. The functions f; and g, are the same as f; and g, respectively with the signs of the
second terms reversed.

These functions can be expressed as multiples of the confluent hypergeometric function ¥,
Understanding ph (i£?/7) to satisfy

ph (i€?/7) = }n+2ph&—phr

we have Si(§) = ge € P (2 — Lir, 5, ig27), (A 38)
81(8) = ¥ V(G + ir, §; (i8%r) e7™), (A 39)
So(§) = E e~ W(§ —Hir, §; (i€%/7) &™), (A 40)
82(8) = E2 T W (G + dir, §; (1E%/7) €™). (A41)

Since Y(a,c; z) = (1/22) {1+ 0(1/|z|)} (A42)

as |z| - oo with |phz| < $r it may be deduced that

AE) & Elrk exp[ — i —igj2r], (A43)
&:(8) ~ ik exp [fni +i8%27], (Ada)
filf) ~ girtexp —dmi—ig2jr], (A 45)
a(f) ~ girhexp[mi+ig2/2r] (A46)

as 7 - 0 with £ fixed.
40-2
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Asymptotic results as |7| - co may be obtained by following the same route travelled for fand g.
Onmitting the details we quote, for |ph7| < 4=,

fullr,T) ~ 2ndritexp[ — dnr — YT+ dirln r —13ni] £ (z/(1 — §2)) A (rhzexp [ —3ni]), (A 47)

g1(8r,7) ~ ombritexp[ — dnr+ Hr — Hirln br+ 13ni] (2/(1 - £2))2 Al (rizexp[3ni]), (A 48)

fol&r,7) ~ 2nbritexp [$nr — Hir + JirIn 37 — 3ni] (2/(1 - £2))} Ai (r82), (A 49)

2,(&r,7) ~ 2mdrit exp [3n7 + LT — Hrln §r + 3ni] £ (2] (1 — £2)E Al (732) (A 50)
and ¢{in 9.

The asymptotic formulae determined so far are not really suitable when |7| - co and £ is fixed
because then ¢ tends to the origin which is a singular point of the mapping (A 16). A useful
formula can be derived simply from the series expansion of . Let f(§) = X ar£%+3; the coefficients

r=0

a: satisfy the recurrence relation
27(27+ 3) ar—Qar_4 + (lr__Z/Tz =0
subject to the initial conditions g, = 1, a; = %. Write

6(r+1)

ar = —*—(2r+3)!+6r

so that ¢, satisfies

2r (2r+3) ¢r —Cr—q+ {%731))—' + cr_z}/'ﬂ = 0.

Assume that ¢s < 2/(s+1)!|7|2 for s < r—1. Then, for |7]| > 1,

o 1 6r—1) 2 2| __ 2
T dr(r+3) [7]21(2r=38) T (r 1) 7Y T (r+1)17]2
since (2r—3)! > r! for r > 3. Since our assumption holds for » = 2, it is valid for any larger r by
induction.

If therefore the expression for ar is substituted in f we conclude that

S(€) = 3(Ecosh £ —sinh £) + O[£{exp (£7) — 1}/|7[*] (A51)

for |7| > 1, the constant in the order term being independent of § and 7. Under the same condi-
tions it may be demonstrated that

S'(€) = 3&sinh £+ O[{(26*+ 1) exp (§) — 1}/|7]*], (A52)
g(£) = cosh{—E£sinh £+ O[&* exp (£7)/|7]7], (A53)
g'(§) = —Ecosh £+ O[(28°+£7) exp &)/ (A54)

The next approximation stemming from the continuation of this device is
S (&) = 3{(1—%772) (£cosh £ —sinh £) — (£3/67%) (£sinh £ —F cosh £)}, (A 55)
g(&) = cosh&—Esinh &+ (£3/67%) (£ cosh& —$sinh§), (A 56)

the errors being of O(|7]|~4).
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While (A 51)—(A 54) are satisfactory for some purposes they must be discarded when |£| is
large. If both || and |7| are large but |{]| is small fresh approximations are a necessity. Now write
k = £[7 so that k replaces { in (A 15). Change variables from « to Z where

1dz .
= = (1—k2)}
e (1—«?)2.
Thus 2Z% = Larcsink + k(1 —«2)1. (A 57)

Define (1 —«2)# in the k-plane in the same way that v is defined in the u-plane. Take arcsin « to
lie between 0 and 4m when 0 < k < 1 and by continuity elsewhere. Then Z# is positive for
0 < k¥ < 1 and the transformation supplies a one-to-one mapping from 0 < Rex < 1 to the
interior of | Z| < {%n?with a cutalong the negative real Z-axis. The mapping is, indeed, one-to-one
over a bigger region but that described is sufficient for our purposes.
Substitute in the differential equation
. w = W|ZH1 -k,
The differential equation for Wis

dzl’fl 72 5 ’ A
rv e {7+1‘6‘2‘2+”1<Z>} ,
2 1 2 1 5k2

where Zh(Z) TRz IO - AI—)

As 7 — oo through real positive values, one may apply similar reasoning to that followed in
deriving (A 23). Consequently,

3niricZt

f(KT, T) ~ _(—1—-—?)_? 13(27'2%)
~ 577 (13 coyi{2rZbcosh (2r2}) —sinh (212} (A 58)
and gk, T) ~ 57 (1 po) —aicosh (272 %) 27Z%sinh (27Z3%)} (A 59)

as 7 —> oo with |Z| < #n?, 0 < Rex < 1. In particular

3
gk, 7) + L f(kT,T) ~ % exp[—27Z%]. (A 60)

ArrPENDIX B
The enumeration of the zeros of

A = pluf’(s) +ivf (s)} — Mug'(s) +ivg(s)},
where A=uf'(§) —iwf(E), n=ug (§)—iwg(&)

will be carried out by examining the variation in the phase of 4 as u tranverses the closed curve
consisting of the real axis above the branch lines and a large semi-circle in the upper half of the
u-plane. The consideration will be split into several portions, each of which will be dealt with
separately. We start with the real axis.
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B 1. The interval 1 <u < 1/M

Recalling that s = lc/z/M £ =s—khu we see that 0 < £ <son 1 <u<1/M. Also 7 = us is
positive and £ < 7, s < 7. Both v and w are negative imaginary on the interval and v = —iu7,,
w = —1iun where the positive quantities 7, and 7 are defined by

Ny = (1=s212)}, 79 = (1-§r2)h
In view of these results

Afu* = g'(&).f '(5) —f'(8) '(S) +70{g" (6).f () —f(€) ¢(5)}
—7{g(8).S"(s) =S (€) &' ()} —mole (€) S (5) = f (£) £(s)}- (B1)
It is known from appendix A that both fand f” are positive for 0 < £ < 7. Also, from (A 8),

{e(E)f (&)} = —3&f™

Hence g/fis a decreasing function of £ and so, since both f(£) and f(s) are positive,

g)f(s)—f (&) g(s) > 0 (B2)
for 0 < § < s < 7. Equally well, f'(s) g[f—g'(s) is a decreasing function of £ which, by (A 8), is
positiveat§ = s Hence &S5~ B8 () > 0 (B3)
for0<f<s<rT
Again, (A 8) and the differential equation (A1) imply that
{g@OI ) = &= [f™.
Therefore g'[f’ is an increasing function of § and
gES () =S (€)g'(s) <0 (B4)
for 0 < § < s < 7. Moreover, f(s) g’[f’'—g(s) is an increasing function of £ which is negative at
=5 G tl / ,
© = s Consequently HGYORVEGIORY! (85)

for0<é<s<T.

The combination of (B 1)—(B 5) indicates that 4 cannot be positive on 1 < # < 1/M. It can be
zero only if each of the four groups of terms in (B 1) vanishes. But that is clearly impossible by
virtue of (B 3) and % # 0. Hence 4 is negative on the interval under consideration.

B2. Theinterval 0 <e <u<1

On the interval 0 < # < 1 at least one of v and w is positive. In addition, s > 7 so that the
inequalities (B 2)—(B5) are not available because change of sign by f(s) and f’(s) cannot be
discounted. A different approach from that of § B 1 must therefore be adopted.

First, observe that

FO-2fQF = 3/ ©+5. 7O =1/ € -1/ )

Ifthere is a point & satisfying 0 < £ < 7, where f* — 7 fis zero, this relation shows that its derivative
is positive there. Thus, f' —7f must pass through a zero by increasing from negative to positive
values. However, f' — 7 f goes positive as £ increases from zero. Hence

J(E)—nf(€) >0 (B6)
for0<§{<r
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Now write A = Muf'(s) +ivf(s)} 4.
Then A, = 1) +ivg(s)

ST )

On 1/(M+1) < u < 1, vis positive and w is negative imaginary. Therefore /A is real and 4,
has negative imaginary part on account of the Wronskian relation (A 8). Indeed, the imaginary
part can be zero only at u = 1.

Similarly, on € < u < 1/(M+1), 4, always has a negative imaginary part. It is never zero
except maybe at u = 0.

From § B 1, 4, is negative at # = 1 and so we can regard the phase of 4, as lying between 0 and
—m for € < u < 1. The phase of 4 may now be deduced when the behaviour of A(uf’ +ivf) is
known on the interval, allowance being made for possible changes of sign in fand f”.

Let the zeros of f (§) in § > 7 be denoted by &,(7), £5(7), .... Itis assumed that they are arranged
in ascending order so that &, < £, < .... As 7 decreases, Sturm-Liouville theory indicates that
the new positions of the zeros must interlace the old and their number increase. A double zero
can never occur because the Wronskian relation prevents f and f’ vanishing simultaneously.
Further, f(£) is positive at £ = 7. Consequently, the only possibility is that £;(7) decreases as 7
decreases.

The zeros of f(s) therefore arise at a decreasing sequence of values of 7 whose members 7; are
given by (1) =5, £,(73) = 5, .... Once £;(7) has passed through s it remains to the left of s for all
smaller values of 7. For such a £; there must be a value of 7 in (0, 1) such that £;(7) = s— Mt
because s — M7 increases from s(1 - M) to s as 7 decreases from 1 to 0. It therefore follows that to
every zero that f(s) goes through as 7 decreases from 1 to 0 there corresponds a zero of f (s — M)
as 7 decreases from 1/(M+1) to zero. The same statement can obviously be made about the
derivatives. Consequently, for every complete circuit of the origin made by the phase of
uf'(s)+ivf(s) as 7 moves from O to 1 there is an opposite circuit made by the phase of
uf’(§) —iwf (&) as7travelsfrom O to 1/(M+ 1). By (B6) uf'(£) —iw f(£) is positive for 7 between
1/(M+ 1) and 1. Therefore, the conclusion is unmodified if the interval for 7 is taken as (0, 1) in
both cases.

Combining this information with that concerning 4, we see that, for 7 going from 0 to 1, the
phase of 4 changes from its value near the origin to negative real by a route which is essentially
clockwise in its general trend and whose angular variation is less than 2x.

B 3. Theinterval —1](1-M) <u< —e

For the interval under consideration in this section  is negative so 7 is replaced by —|7|.
Advantage is then taken of (A 5) to replace — || in the second argument of f and g by |7].
Whenu < — 1,vis positive imaginary since points just above the real axis are being investigated.

Thus v =i |u| 5, and
uf’(s)+ivf(s) = —[u[ {f"(s) + 70/ (5)}

which is negative since s < |7|.

The argument of § B 2 is now repeated. In this case 4, has a positive imaginary part. The main
alteration is to start with the zeros of f (s + M |7]). Any &; which passes to the left of s+ M |7]| as |7]
goes from 1/(1— M) to 0 must eventually give rise to a zero of f(s) as |7| decreases from 1 to 0.

Accordingly, as 7 moves from — 1/(1— M) to 0, the phase of 4 alters from negative real to its
value near the origin by a clockwise path of angular extent less than 2m.
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B4. The interval u < —1/(1 - M)
The device described in the first paragraph of § B3 is first followed. Then, since both » and w
are positive imaginary,
4 ’ g,(s)"'"?og(s) ’
; = - -2 - . B7

Since s < |7/, the denominator is positive and, since £ < |7|, the last factor of the last term of (B 7)
is positive by (B 6). Therefore, by (B 10) below, the right-hand side of (B 7) increases as s increases.
It is negative at s = £ because of the value of the Wronskian. Since s < £ on the intervals, the

inference is that 4 is negative.

B 5. The neighbourhood of the origin

Near the origin |u| and |7| are small while £ has effectively the constant value s. In these
circumstances we can avail ourselves of (A 11)—(A 14) and (A 43)—(A 46).

If 0 < phu < }m, express 4 in terms of f; and g; by means of (A 36) and (A 37). Then

A = 34,7k etn,

where A4, is the same as 4 with f; and g, in place of f and g respectively. Now (A 43) and (A 44)
give A x — 6istuelsM (B8)
for small |u|.

When }n < phu <, substitute for fand g in terms of f; and g,. Then (A 43) and (A 46) show
that (B 8) is still valid.

It is important to recognize that (B 8) conveys the information that the essential singularities
of fand g near 7 = 0 cancel in 4 so that special treatment to account for them is unnecessary.

From (B8), 4 has a simple zero at the origin and its phase decreases by m as the origin is
encircled from phu = n to phu = 0.

B6. The interval u < 1/ M

At this stage the opportunity is taken to unite the results of §§ B 1-B 5 into a single statement
governing the phase of 4 on the real axis.

Asuincreases from — oo to 1/M, passing above the origin, the phase of 4 proceeds from negative
real values to negative real values by making a 2w circuit of the origin in the clockwise sense.

B7. The interval 1/M < u < 2|M

Up to this point the only real zero of 4 which has occurred has been at the origin and the net
phase variations of 4 have not been very great. Unfortunately, there are zeros of 4 inu > 1/M
as will be discovered subsequently and so the analysis for this interval is much more complicated
than for the previous ones. ,

Onu > 1/M, £is negative and may be written as —§; where £, = Mr—s. Clearly 0 < &, < 7
and 0 < 5 < 7. Both v and w are negative imaginary. Drawing benefit from (A 4), we have

A= f"(&) +n.f (60}

where 7, is the same as # with £, for £, Thus A is positive and so is # f’(s) +iv f (s). Hence 4 has the
same sign as 4, which now takes the form given by

A = L&) +neE) g(s)+108(s)
S+ SE) ) +mef(s)
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a e = &) +nel)
. Put &1 = F@eTar @)
Then Do = —F(£,7) —F(s5,7). (B9)

The first task is to show that if, for some 7, g'(£, 7) changes sign as £ goes from 0 to 7 then 4,
cannot vanish for this value of 7. From (A 1) and (A 8)

0 _—sf2-gyr) |
& &N = e mrer (B10)

Consequently, F decreases steadily as £ increases from 0 to 7. Therefore, F must be positive for
0 < £ < 7 ifitis positive at £ = 7. In particular, this must be true at £ = £, and £ = sso that 4, is
negative. However, g’ is negative near £ = 0 and if it changes sign, which can happen only once,
it must be positive at £ = s and so must F. Thus, in locating any zeros of 4,, attention can be
restricted to the situation where g’(£, 7) remains negative for 0 < £ < 7

When u < 2/M, s > $Mr and & < s. Therefore, if F(£;,,7) is negative, (B 10) implies that
F(s,7) isnegative and 4, cannot be zero. Thus points at which F(§,, 7) is negative can be excluded
and only the feasibility of 4, possessing a zero at which F(§,,7) is positive need be scrutinized.
Necessarily, F(s,7) will have to be negative for a zero to be on the cards.

The target of the next piece of analysis to demonstrate that 4, must be increasing at such a zero.
~ Let 9/dr denote a derivative with respect to 7 in which £ is kept constant. Then 9f (£) /07 satisfies

B30 -9

Variation of parameters, together with (A 2) and (A 3), supplies

YO [ 0 r@sn-s@rma (B11)
whence 29O =[SO O -gOsME B
Smilaty  50(6) = 3 [, 6O U O )@ O}, (B13)
0, 2 [ , ,
G WOIGECEFIGH O (B 14)
It follows that
2P = bt o O - FE Ot (B15)

The alteration in 4, as u varies can now be calculated. It is given in essentials by
e {F(§,T)+F 5T)} = M F(g’,T)+ F(§,T)+ F(s T) (B16)

when £ = £,, after substituting from (B 10) and (B 15).
Dropping the explicit mention of 7 in F, we know from (B10) that F(§) > F(£,) for £ < &,.

Hence &' —FEN (@) +n{e®) —FE)S(©)} > 0 (B17)

41 Vol. 284. A.
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for 0 < £ < &;. Thefirst two terms of (B 17) furnish a negative contribution and so g(§) > F(&,) f(&)
for 0 < £ < &,. Accordingly, it is legitimate to divide by g(§) — F(&,) f(£). It may therefore be
asserted that

i[ g'(E) —F(&)f'(£) +1] _ _i_i{g'(ﬁ) —F(El)f'(é)}2 <1
dE1E¥e(8) - F (&) S(E)} €& 7 £ g(8) —F(61).f(€) 7

whence §'(8) =F(&)S' (&) +{E+38°F (&) + &g (&) —F(§) S (§)} < 0 (B18)
for0 < £ <é.
Putting £ = £, in (B 17) and (B 18) makes evident that
£+ 381 F (&) + & < (B19)

is a necessary condition for the existence of a zero of 4, in which F(£;) > 0. Obviously, no zero of
this type can arise for those values of # which satisfy 1 < M7—s < 5.

To assess the relative magnitudes of the terms in (B16) when a zero is possible further
inequalities are needed. Now

dpit ., \ 1 _ (1 1 _ g
Slate@-rer ey = (z-5)0-reso-5

Because g(§) — F(£,) f(£) is positive and steadily falls, as £ increases, from the value of unity at
£ = 0, the terms involving 1/£2% on the right-hand side must be negative. Therefore

¢©-FE) s ®+e+arE) e+ 5[ e -FEps iy <o (B.20)
for0 < £<§.

Consider next G(§) = —1{g'(§) —F(&,) f'(§)}{g(&) — F(&,) f(£)}/&%

By virtue of (B 17) and (B 20), G(&) exceeds 72/£x which has a minimum of 27 when £ = 7/,/2.
Consequently, G(£) > 1 for 7 > . On the other hand, since # < 1, (B17) implies that g(£) —
F(&) f(£) > et and so, from (B 20),

&'(8) = F(£1) () +E+38%412 < 0
for 0 < £ <7 < 4. Hence G(£) > 72(1+ 3£2[47%)2[En

and the right-hand side has a minimum when 12£%/7% = 17— ,/193. This minimum is not less
than 37 and soit has been established that G(§) > 1forr > 4. Moreover, a deduction from (B 17) is

4(&) —F(E))f(8) > e,
where zy = L&y + 47 arcsin (§[7). (B21)
The inequalities (B 18) and (B 21) entail

G(E) > (1+7gY) e,
The right-hand side diminishes as £ grows and must therefore have 2 =37 as a lower bound for
£ < 7. This lower bound is not less than unity if 7 < (2/n) In2 & 0.4. Consequently, we have
proved that GE) > 1 (B 22)

for 0 < £ < £, without any restriction on 7. It is an immediate consequence of applying (A 8) to

(B 22) that {f,(gl) + ,'hf(gl)}z < 9&, 9,72 (B23)
when F(£;) > 0.
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Amalgamating (B 10), (B 15) and (B 23) we obtain
< 328 (- M) |
al® e HOEiG) (B24)

when F(§) > 0. Since &; < MT, a significant upshot of the analysis so far is that, where F(£,,7)
is non-negative, F(£,;,7) has a descending value as u increases from 1/M.

In order to take advantage of (B 24) in (B 16), we first compare values of the denominator of
(B 24) with those at § = 5. Now

I L1 Lo rens 2l -2re)+ L re.
U@+ 17O | = s © -1/ O (@ -2 O) R )

On account of (B 6) and (A 9) the right-hand side is positive and so
{F/6) +nof ()} EnE > (' (€) +0f ()} 508 (B 25)

for0 < §<s.

The function g(§) — F(s) f(§) can change sign at most once as £ goes from 0 to s. In fact, no
change of sign arises because the function is positive at both £ =0 and £ =s. Similarly
&' (&) —F(s) f'(&) is never positive, i.e.

2 g(&)—F(s)f(£) >0, g'(§)—F(s)f'(€) <0 (B 26)
for0 < §<s.
Combining (B 15), (B 23) — (B 26) and remembering that £, 4+s = M7, we obtain
d 38 (6 —s) {1 — (E1+&i5+5%)[7%
g PO < =5 @) P 20
when F(§,) > 0. But B2+ & s+s5%=E—MrE + M2 <

because £ < Mr and M < 1. The right-hand side of (B 27) cannot, therefore be positive.

The significance of this result is that 4, must steadily increase with # in any interval where
£, < s and F(£,) > 0. Furthermore, once F(£,;) has gone negative (B 24) prevents it becoming
positive again for any greater u; then (B 10) forces F(s) to be negative for £; < s. In other words,
either 4, increases through a zero and remains positive until # = 2/M or it stays negative through-
out 1/M < u < 2[M.

Inall circumstances 4, has at mostonezeroon 1/M < u < 2/M. Thereisnozeroif F (s, 2s/M) >
and exactly one zero if F (s, 2s/M) < 0,the zero being at u = 2/M if the equality holds.

B 8. The interval u > 2| M

In thisinterval &§; > s so that, if F(£,) is positive, (B 10) implies that F(s) > 0 and 4, cannot be
zero. Only the case where F(&;) is negative therefore needs to be considered. However, if
F(&,) < 0, the derivation of (B 23) fails and so it may no longer be true that 4, is increasing at
a zero. A proof by other means that the left-hand side of (B 27) was negative would settle the
matter. Regrettably, this avenue is not open because it is false to say that the left-hand side of
(B 27) is negative at a zero of 4,. However, what can be shown is that once the derivative has
become positive it takes positive values for succeeding values of « and this will be sufficient for
our purposes.

Denote the operator M 0[/0¢+0/dr by D. The behaviour of the derivative at points in § > s
where D{F (&) + F(s)} < 0 will now be discussed. At such points DF(£) < 0 because DF(s) > 0
by (B 15).

41-2
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Our aim is to calculate the second derivative from (B 10) and (B 15), and then estimate its
value. Now

D[Mfelo - PO f0)dt = M{g(® - FESOF
-2 f {g(t) = F()f(0)f (1) DF(E) dt

+2[ () -FOS O} o0 -F@O - f0)at. (B2
From (B11) and (B13)

]

5800 - FE 5 () = 3 {80 ~FOAWHS O g0 ~g(fW)du> 0 (B29)

T

for 0 < ¢t < £ by (B2) and (B 26). Applying (B 26) and (B 29) to (B 28) we obtain

D [*{a)) - F@O.fOR dt > Mig(©) - FOS@P-2 [ a0 SO O DFH & (B30)

There is a similar result with s for £, the first term on the right-hand side being missing.
On account of (B 26) and the positivity of f,

[ew-reroyoas [(eo-roroyo
> [Nt - e s 0)

since F(§) < F(s) for £ > 5. This may be substituted in (B 30) since DF(£) < 0. Combining this
with the (B 30) in terms of s and noting that D{F(§) + F(s)} < 0, we have

D[ {et)-F@ 7 02 dr+D [ (o)~ Fo)f 1)t > Mig® - FOS®F.  (B31)

Further

DL{e(®)- FESOF = O - FEOS O | (M7 - 2]
+2{80) —F(ﬁ)f(g)}{——g(é) - F(©) 2./ (©)~f(€) DF()
> (60 - FOS O [ (Mr—8) 21
- {66 - FES W O DFE)

by (B 26) and (B 29). By taking the derivative with respect to ¢ of
{e() —FES O} (@) (1 - 2[4

we can see, from (B 17), (B6) and (B 26), that it is an increasing function of ¢ for ¢ < £. Hence

L8O ~FOS OV ® > - 86) - FOSOM )
> ;71— {(s) = F(s) £} (5)
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for £ > s. Therefore
D {e®) - FOSOF+ D,?io ()~ F(5) f(5))?
> (&) - FEOf O {—% (Mr—&) - 2M}—T—§§,§{g<s> —FO)f().  (B32)

Since {f' &) +nf(E)) =3Eg(6) —F(E)f ()}
we may conclude from (B 31) and (B 32) that

3 M £ 9712 6t 9
D7D+ FON > 7 (157 + 2~ g5 + g ) (M7 =) (6() ~FE)S(€)

— o) F SO

B (2-E)e-Fes@)DEO-FOsE) B3

for £ > s and D{F(£) + F(s)} < 0.
To bound the first two terms on the right-hand side of (B 33) observe that

MOF(£) [ +oF(s)[or < 0

implies that  {g(6)~ P/} < 25 M (2-5) (e®) - FOLS O

Hence the sum of the first two terms on the right-hand side of (B 33) is greater than

b+ 2 -+ - 25 (2-5) @ - Fos @y

The quantity in the first brace is, since § < 7,, not less than

4 3 5
§+1_71 67 2MT+MT_1_L+ (2§

s £, &
dt g M = gt (g T O 2M M)

4
> I—A—§;+%(2—M2)(1—M2),

because the entity in the parenthesis has a negative derivative with respect to £/r and § < M.
Accordingly, the sum of the first two terms on the right-hand side of (B 33) is positive.
As far as the third term is concerned we start from

Dlet®) —FESE _ LM (2-5) - 2} @) tet0) - oS )

- My = [ (e - FO£ 01 () .
0

Now
1, £\ _ 1 G/ B PN s W P
(6 (-7 -3/ s reym ~ (6 (2 5) ~wmlrO - B @ rure
£ (& £ ()
| <[-rt-oream(- M) (- am) |
on account of (A 9). Consequently, D{g(§) — F(£) f(£)} < 0 and the last term of (B 29) supplies a

positive contribution.
41-3
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The fact that the left-hand side of (B 33) is positive where D{F(£) + F(s)} < 0 leads to the
deduction that 73D{F(£) + F(s)} must be an increasing function of # there. One outcome is that
once D{F(§) + F(s)} has assumed a positive value as » increases from 2/, it must remain positive
thereafter.

The consequence is that 4, has at most two zeros for # > 2/M. There can be two zeros only if
A, is negative at u = 2[M, i.e. F(s,25/M) > 0. But then, according to the analysis of § B 7, there
isno zeroin 1 < Mu < 2. Hence 4, has at most two zeros on ¢ > 1/M. It is perhaps worth noting
that, if for s = s, there is a zero at 7 = 7, there is also a zero at 7 = 7, when s = s, where

= Mr,—

Whether there are two, one or no zeros is partially dictated by the behav10ur of 4y as u - co.
From (A 23), (A25), (A31), (A51)—(Ab54)

Ay ~ 1(25—1) e8[(seS—sinhys) (B 34)

as u - 00. Thus, if s > %, 4, has precisely one zero on u > 1/M. As s lessens and passes through 4,

a second zero appears. It originates at infinity and migrates towards the origin while the first zero
marches in the opposite direction. Eventually the two zeros coalesce when s has fallen to a certain
value, say s,. A slight reduction in s causes the zeros to disappear and 4, has no zeroson u > 1/M
for s < s,.

The statement that a second zero joins the first as s passes through } rather than the first zero
leaving at infinity is justified by a more detailed consideration of the behaviour of 4 at infinity.
A more accurate assessment than (B 34) is based on the fact that (A 35) indicates that errors due
to the termsin &, are exponentially small so that the main correction comes from applying (A 55)
and (A 56) to the terms in 5. Use of these equations reveals that the alteration to (B 34) is the
addition of a positive multiple of

O SR E SR T
But ‘ €28 > 14 254 252+ £53+ 254,
€2 < 1— 254 25% — 4534 254

so that the additional quantity certainly exceeds (}s*+ 3s%) /7% which is positive. Consequently,
A o is always diminishing at infinity. In particular, 4, can approach zero at infinity only if it has
a zero at some earlier finite point. '

There is thus a critical Strouhal number s, dividing the values of s into those where 4, has at
least one real zero on « > 1/M and those where 4, is non-vanishing.

This knowledge may be fused with that of § B6 to give the conduct of 4 along the whole real
axis. Assume that any zeros on «-> 1/M are circumvented by an indentation above. Then, as u
moves from — oo to oo, the phase of 4 starts at negative real values and makes a circuit of the
origin in the clockwise sense of magnitude 3w when s > 4. The magnitude is 4© when 4 > s > 5,
and 2r if 5 < §;.

' : B9. The large semi-circle

This section deals with the variations in phase of 4 for large |«| and 0 < phu < n. Suppose
firstly that 0 < phu < §n—38. Again replace § by —§, and use (A 4) to make the arguments of
and g into £;. Then (A23), (A 25), (A31), (A51)-(Ab4) give

A~ 22(1-8)%es(2s—1) f(¢r,7),
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where { = M — 1/u. Consequently, for |u| - 00, 0 < phu < $n—¢
A~ 3u2rg(1—§2)} (25— 1) exp (s + dn7 — §728) (B 35)

where z is expressed in terms of { by means of (A 16).

For in—38 < phu < 3n, the metamorphosis in the asymptotic performance of f and g must be
attended to and (A 27), (A 32) used. However, owing to the cancellation which takes place, it is
necessary to choose the higher approximation (described after (A 33)) which includes B, but no
other additional terms. This leads to, for example,

fr-gtf~ ot -ei(i- 2= Boa)+ b

x exp (nT —2128) + 3vexp[ — inT + §728],

g+(1=-8kg~ —[T§(1 —4;2)&{1 _4; 3_?_"”30(2)}+%,,]

z8 T
x exp (3n7 —3728) + v exp [ — in7 + §72],

_1p2
where V=£l- 4 1 19

di(1-g)t (1-gt

and B,(z) is specified in (A 34). Following along these lines, we discover that

5

A ~ 3u(25—1) [1§(1 —§2)‘1‘{1 BT —%Bo(z)}+%v]

x exp [s+ inr —2728] — 3uPvexp[—s—inr+2728] (B 36)

as |u| > co with n—d < phu <

If 0 < phu < $n—4, the d1ﬁ‘erence between (B 36) and (B 35) contains only terms of smaller
order than those retained in (B 35). Therefore, (B 36) may be safely employed, as far as our under-
taking is concerned, for the whole interval 0 < phu <

On the interval 1 < phz < 7 do not alter £ but put —71'in place of 7. Replace — 7’ by 7’ in the
second argument of f and g by virtue of (A 5). Since —{n < ph7’ < 0, the appropriate formulae
are (A 29) and (A 33) with ¢ still equal to M —1/u. If —in+6 < ph7’ < 0, substitution of the
asymptotic expressions reveals that

A~ —3utvexp[inr’ — &'zt —5] = —3uvexp[ — inT+ 272 —5]. (B37)

The differences between (B 37) and (B 36) in this range are negligibly small and so (B 36) may
also be employed for these values of phu.

Finally, for —{n < ph7’ < —4n+4, we elicit that (B36) also holds. Thus (B 36) may be
accepted as the relevant formula for the total interval 0 < phu <

It is not by any means a trivial exercise to trace the variations in ph A4 from (B 36) as the semi-
circle is encompassed. If we extract the factor 3u?v exp [ —s — in7 + 2728] whose phase variation is
2w in the anti-clockwise sense, we are left with

(25—1)[ g(1— §2)i{1—4—1—82§—~—3 (z)}+1]exp[2s+~n1——72%]~1
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Since |u| is large, functions of { can be expanded about { = M and only second orders kept to
ensure that the approximation is consistent. When this is done, the expression reduces to

m(r) = (2s—1) (ay7+ f,) exp{2s—2s(1 —M2)t+e7}—1,
where (1-3M2) o, = 2M(1— M2)%,
(1—3M?) B, = — 1+ 3M2—23M4— (2— M) (1 — M2)bs— 2M3(1 — M?) 2,
¢ = arcsin M+ M(1— M?)%.

On the real 7-axis the sign of the derivative of m(7) is that of et, + ¢(at, 7+ f;) . It therefore changes
from negative to positive values as 7 travels from —oo to co. If s > %, m(7) is negative at — oo and
positive at + oo. Accordingly, m(7) has exactly one real zero if s > §.

If s < %, m(7) is negative at both + 0o and so possesses either two real zeros or none. The
elucidation is crucial to 4 and we wish to demonstrate that m(r) has no real zero for s < 1.

The maximum of m(7) on the real axis is

(1—2s) (oy/c) exp[25 —2s(1 — M?)2 —1— B, ¢fa;] — 1.
Now sin 20 < 20 for 6 > 0 and so ¢ > 2M (1 — M?)%. Hence
afe < (1—-M?)[(1-3M?) < 1
unless M = 0, which case can be excluded without loss. Also
(1=3M2) B, = M4 — (1 — M2)2—25(1— M2)% — M2(1— M2)} {s+ (1 — M2)¥H2s(1 — M2)} -1}
> —(1—M?)2{1+2s(1— M?)}}.

Moreover, 0 < tanf for 0 < 6 < 3 so that arcsin M < M(1—M?)% and ¢ < 2M (1 — M?)-3,
Hence
—picfoy < 1+25(1—M2)3,

In addition, (1 —2s) e%*is a decreasing function of s and so does not exceed unity. It is therefore
evident that the maximum value of m(7) is negative for s < }, i.e. m(7) has no real zeros when
s <3

Remembering the conclusions of § B8 we see that 4 has the same number of non-real zeros
between the large semi-circle and the real axis asm(7) whens > fors < sybutonelessifsy < s < 1.
To put it another way, 4 has an infinite sequence «{, 47, ... of non-real zeros in the upper half
plane for any value of s. In addition, as s decreases through s,, an extra non-real zero %, appears
in the upper half plane, starting from a point in the real axis when « > 1/M.

B 10. The lower half-plane

The unsymmetric nature of 4 prevents our being able to deduce the zeros of 4 in the lower
half-plane from those in upper and there is, in fact, a significant difference. Fortunately, the
treatment can be substantially simpler.

When «is in the lower half-plane take a complex conjugate of 4. Owing to the series expansions
(A2) and (A 3) for fand g the effect is to replace u by «* and change the signs of both v and w.
Thereby, the problem is converted to discussing the zeros in the upper half-plane of 4 with the
signs of » and w reversed. Let us denote this expression by 4-.
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On1l<gu<1/M,
A=
T o = FOU O -1l ) (8'6) 1S () (B38)

By (B6) and (B 10) the right-hand side of (B 38) is a decreasing function of &. It is positive for
£ = s and therefore positive for £ < s. Hence 4~ is positiveon 1 < u < 1/M.
The argument of §§ B2 and B 3 can be transferred virtually unchanged, the principal difference

being that Ag has a positive imaginary part instead of a negative one.
Foru < —1/(1-M),

T Sy~ €O+ 786 — B U@+ 1/ ), (839)
e g (&) —ng(§)
whe h®) = o= (B 40)
. o, 32—y
Since & h® = e ror (B 1)

the right-hand side of (B 39) is a decreasing function of 5. Being positive at s = £, it must be
positive for s < £. Therefore A~ is positive on u < —1/(1 —M).

Pulling these last three paragraphs together we see that the phase of 4~ swings from positive
real values back to positive real values by making a clockwise circuit round the origin of 2r as
u traverses the real axis in u < 1/M.

On u > 1/M, A~ has the same sign as 45 where

Ay = — Fy(§) — F(s).

But F;(§) is an increasing function of £ by (B 41) and so attains its largest value at £ = 7. Now

7 50 = g5 [ e - Rinfopa

by (B 15) and (B 41). Thus F;(r) achieves its maximum at infinity. The asymptotic formulae for
fand g, being uniformly valid, imply that this maximum is negative. Thus F] is always negative
with the consequence that 47 is positive on the entire portion z > 1/M.

An investigation, similar to § B9, provides the information that on the large semi-circle

4= ~ 3uPvexp[s+ jnt —212%]

—3u%(25+1) [g(1 - §2)i{7+ 452%4'2%30(2)} - %V] exp [—s—inr+2r28].

Accordingly, 4- has an infinite sequence of zeros in the upper half-plane, the same number as a
function of similar character to m(7).

We conclude that, in the lower half-plane 4 has no real zeros (except for the one at the origin)
and an infinite sequence of non-real zeros ;7,45 , ....

B 11. Summary

It is convenient now to draw together the threads of the preceding argument and summarize
the information it conveys about the zeros of 4.

For all positive values of s, 4 has a simple zero at the origin.

With regard to other zeros, the upper half-plane will be dealt with first.
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Ifs > %, A has a single (simple) real zero in # > 1/M and an infinite sequence of non-real zeros
ui,ug, ... in the upper half-plane. There are no further zeros in this region.

Iff > s > s,, there is an additional real zero in « > 1/M but no other change from s > §.

If s < sp, there are no real zeros in > 1/M and the non-real zeros are supplemented by the
extra zero i, which stems from the coalescence of the two real zeros.

In the lower half-plane, 4 has no real zeros (other than the origin) but, for all s, possesses an
infinite sequence of non-real zeros uy, u5, ....

It may seem surprising that the coalescence of the two real zeros in the upper half-plane does
not produce a non-real zero in the lower half-plane. However, any zero generated below the real

axis by this process would lie on a different Riemann surface from the lower half-plane.
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